首页> 外文学位 >Local Imaging of Optoelectronic Properties and Film Degradation in Polymer/Fullerene Solar Cells with Electrostatic Force Microscopy.
【24h】

Local Imaging of Optoelectronic Properties and Film Degradation in Polymer/Fullerene Solar Cells with Electrostatic Force Microscopy.

机译:用静电力显微镜对聚合物/富勒烯太阳能电池中光电特性和薄膜降解的局部成像。

获取原文
获取原文并翻译 | 示例

摘要

With power conversion efficiencies on the rise, organic photovoltaics (OPVs) hold promise as a next-generation thin-film solar technology. However, both device performance and stability are inextricably linked to local film structure. Methods capable of probing nanoscale electronic properties as a function of film structure are thus a crucial component of the rational design of efficient and robust devices. This dissertation describes the use of three scanning probe methods for studying local charge generation and photodegradation in polymer/fullerene solar cells. First, we show that time-resolved electrostatic force microscopy (trEFM) is capable of resolving local photocurrent from sub-bandgap excitation down to attoampere level currents, a result unattainable by traditional contact-mode methods. We find that the local charging rates measured with trEFM are proportional to external quantum efficiency (EQE) measurements made on completed devices, making trEFM images equivalent to local EQE maps across the entire solar spectrum. For both phase-segregated and well-mixed MDMO-PPV:PCBM film morphologies, we show that the local distribution of photocurrent is invariant to excitation wavelength, providing local evidence for the controversial result that the probability of generating separated charge carriers does not depend on whether excitons are formed at the singlet state or charge transfer state. Next, we describe how local dissipation imaging can be performed with commercially-available frequency-modulated electrostatic force microscopy (FM-EFM) and show that dissipation maps are highly sensitive to photo-oxidative effects in organic semiconductors. We show that photo-oxidation induced changes in cantilever energy dissipation are proportional to device performance losses. We further develop dissipation imaging by implementing ringdown imaging, which directly measures the quality factor of the cantilever, enabling quantitative dissipation mapping. Using organic photovoltaic materials as a testbed, we study macroscopic device degradation as a function of photooxidation for three different film morphologies. According to EQE measurements, we find that the stability of the macroscopic devices is very sensitive to processing conditions, with films processed with the solvent additive 1,8-diiodooctane being the most stable. At the microscopic level, we compare the evolution of cantilever power dissipation as a function of photochemical degradation for three different polymer/fullerene blend morphologies, and show that the evolution of local power dissipation correlates with device stability. Lastly, we show that cantilever power dissipation increases more rapidly over large fullerene aggregates than in well-mixed polymer/fullerene regions, suggesting that local photochemistry on the fullerene contributes strongly to the dissipation signal.
机译:随着功率转换效率的提高,有机光伏(OPV)有望成为下一代薄膜太阳能技术。但是,器件的性能和稳定性都与局部薄膜结构密不可分。因此,能够探测与薄膜结构有关的纳米级电子性能的方法,是有效而坚固的设备合理设计的关键组成部分。本文介绍了三种扫描探针方法在研究聚合物/富勒烯太阳能电池中局部电荷的产生和光降解方面的应用。首先,我们证明了时间分辨静电力显微镜(trEFM)能够解决从子带隙激发到安培级电流的局部光电流,这是传统接触模式方法无法实现的。我们发现,使用trEFM测量的局部充电速率与在完整设备上进行的外部量子效率(EQE)测量成比例,从而使trEFM图像等效于整个太阳光谱中的局部EQE映射。对于相分离和充分混合的MDMO-PPV:PCBM膜形态,我们表明光电流的局部分布对于激发波长是不变的,为有争议的结果提供了本地证据,即产生分离的电荷载流子的概率不取决于激子是在单重态还是在电荷转移态形成。接下来,我们描述如何使用市售的频率调制静电力显微镜(FM-EFM)进行局部耗散成像,并显示耗散图对有机半导体中的光氧化作用高度敏感。我们表明,光氧化引起的悬臂能量耗散变化与器件性能损失成正比。我们通过实施环降成像来进一步开发耗散成像,该成像可以直接测量悬臂的品质因数,从而实现定量耗散映射。使用有机光伏材料作为测试平台,我们研究了三种不同薄膜形态下宏观器件的降解与光氧化的关系。根据EQE测量,我们发现宏观设备的稳定性对处理条件非常敏感,其中以溶剂添加剂1,8-二碘辛烷处理的薄膜最为稳定。在微观水平上,我们比较了三种不同的聚合物/富勒烯共混物形态的悬臂功耗随光化学降解的变化,并表明局部功耗的演变与器件稳定性相关。最后,我们表明,在较大的富勒烯聚集体上,悬臂功率耗散比在充分混合的聚合物/富勒烯区域中的耗散更快,这表明富勒烯上的局部光化学对耗散信号有很大贡献。

著录项

  • 作者

    Cox, Phillip Alexander.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Physical chemistry.;Materials science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:40:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号