首页> 外文学位 >Positron production by x -rays emitted from betatron motion in a plasma wiggler.
【24h】

Positron production by x -rays emitted from betatron motion in a plasma wiggler.

机译:在等离子摆动器中,由电子感应加速器运动发出的X射线产生正电子。

获取原文
获取原文并翻译 | 示例

摘要

A new method for generating positrons has been proposed that uses betatron X-rays emitted by an electron beam in a high-K plasma wiggler. The plasma wiggler is an ion column produced by the head of the beam when the peak beam density exceeds the plasma density. The radial electric field of the beam blows out the plasma electrons transversely, creating an ion column. The focusing electric field of the ion column causes the beam electrons to execute betatron oscillations about the ion column axis. This leads to synchrotron radiation in the 1-50 MeV range, if the beam energy and the plasma density are high enough. A significant amount of electron energy can be lost to radiated X-ray photons. These photons strike a thin (.5Xo), high-Z target and create e+/e - pairs. It is this new method of positron production by X-rays emitted from betatron motion of electrons in a plasma wiggler that is explored in this thesis.;The experiment was performed at the Stanford Linear Accelerator Center (SLAC) where a 28.5 GeV electron beam with sigmar ≈ 10mum and sigmaz ≈ 25mum was propagated through a neutral Lithium vapor (Li). The radial electric field of the dense beam was large enough to field ionize the Li vapor to form a plasma. Since the typical electron beam density of 4 x 1017cm -3 was greater than the plasma the plasma density of 3 10 17cm-3, electrons were completely blown-out forming a pure ion column which led to electron betatron oscillations. The synchrotron radiation spectra from these oscillations had critical energies on the order of 50 MeV, ideal for positron production. The X-rays traveled 40m downstream of the plasma, were collimated and collided with a 1.7mm (.5X o) Tungsten (W) target. The e+/ e- pairs were imaged with a magnetic spectrometer and detected using silicon surface barrier detectors. Positrons were measured in the energy range of 2-30 MeV. The positron yield was measured as a function of plasma density, ion column length and electron beam pulse length. A computational model was written to match the experimental data with theory. The measured positron spectra are in excellent agreement with those expected from the calculated Xray spectral yield from the plasma wiggler. After matching the model with the experimental results, it was used to design a more efficient positron source, giving positron yields of 0.44 e+/ e-, a number that is close to the target goal of 1-2 e+/e- for future positron sources.
机译:已经提出了一种新的产生正电子的方法,该方法使用高K等离子体摆动器中电子束发射的电子感应加速器X射线。等离子摆动器是当峰值束密度超过等离子密度时由束头产生的离子柱。束的径向电场横向吹出等离子体电子,形成一个离子柱。离子柱的聚焦电场使束电子围绕离子柱轴执行电子感应加速器振荡。如果光束能量和等离子体密度足够高,这将导致同步加速器辐射处于1-50 MeV范围内。大量的电子能量会丢失给辐射的X射线光子。这些光子撞击薄的(.5Xo)高Z目标,并形成e + / e-对。本文研究的是这种新的通过等离子体摇荡器中电子的电子加速器运动产生的X射线产生正电子的方法。该实验在斯坦福线性加速器中心(SLAC)上进行,其中28.5 GeV电子束与sigmar≈ 10um和sigmaz≈ 25mum通过中性的锂蒸气(Li)传播。密集束的径向电场足够大,足以使Li蒸气电离形成等离子体。由于典型的电子束密度为4 x 1017cm -3大于等离子体,等离子体密度为3 10 17cm-3,因此电子被完全吹出,形成纯离子柱,导致电子电子加速器振荡。这些振荡产生的同步加速器辐射光谱的临界能量约为50 MeV,非常适合于生产正电子。 X射线在等离子体下游40m处传播,被准直并与1.7mm(0.5X o)钨(W)目标碰撞。 e + / e-对用电磁光谱仪成像,并使用硅表面势垒检测器进行检测。在2-30 MeV的能量范围内测量正电子。测量正电子产率与等离子体密度,离子柱长度和电子束脉冲长度的关系。编写了计算模型以使实验数据与理论相匹配。测得的正电子光谱与从等离子摆动器计算出的X射线光谱产量所预期的正电子光谱非常一致。在将模型与实验结果进行匹配之后,将其用于设计更有效的正电子源,使正电子产率为0.44 e + / e-,该数字接近未来正电子的1-2 e + / e-的目标目标资料来源。

著录项

  • 作者

    Johnson, Devon Kryle.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Electrical engineering.;Plasma physics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 221 p.
  • 总页数 221
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号