首页> 外文学位 >Strong, damage tolerant oxide-fiber/oxide matrix composites.
【24h】

Strong, damage tolerant oxide-fiber/oxide matrix composites.

机译:坚固,耐破坏的氧化物纤维/氧化物基质复合材料。

获取原文
获取原文并翻译 | 示例

摘要

Electrophoretic deposition (EPD) is an easy and cost effective method to fabricate fiber-reinforced green composites. Non-conductive Nextel(TM) 720 fibers were successfully coated with a transient, conductive polypyrrole submicron surface layer for use directly as an electrode in EPD processing. However, electric-field shielding limits particle infiltration into the conductive fiber bundles and they mostly deposit on the outer surface of the fiber bundle. When the bundle is large, central cavities exist after deposition.; The EPD cell was modified for electrophoretic infiltration deposition (EPID). Non conductive fibers were laid on an electrode and charged particles in an ethanol suspension are driven there through by an electric field, infiltrate and deposit on the electrode to then build up into the fiber preform and fill the voids therein. Dense, uniform, green fiber composites were successfully fabricated via constant current EPID. The EPID process is modeled as capillary electrophoretic infiltration. The process consists of two steps: particle electrophoresis outside the capillaries and electrophoretic infiltration inside the capillaries. Due to the zero net flow of the ethanol across the capillary cross-section, there is no electro-osmotic flow contribution to the deposition rate. Hamaker's law was extended to the EPID process, i.e., the deposition yield is proportional to the electric field inside the capillaries. The total deposition yield is controlled by the slow step of the process, i.e., the rate of electrophoresis in the open suspension outside the capillaries.; AlPO4 was proposed as a weak layer between oxide fibers and oxide matrix in fiber-reinforced ceramic matrix composites (CMC's). AlPO 4 nano particles were synthesized by chemical co-precipitation of Al 3+ and HPO42- with urea at 95°C. The solution pH basic region and amorphous AlPO4 precipitated of narrow size distribution with a mean particle size 50nm. Nextel 720 fibers were pretreated with cationic polyelectrolytes to have a positive surface charge and then dipped into diluted, negatively-charged AlPO4 colloidal suspension (0.05M) at pH 7.5. Amorphous AlPO4 (crystallizes to tridymite- and cristobalite-forms at 1080°C) nano particles were coated on fibers layer-by-layer using an electrostatic attraction protocol. A uniform and smooth coating was formed which allowed fiber pullout from the matrix of a Nextel 720/alumina mini-composite hot-pressed at 1250°C/20MPa.; Reaction-bonded mullite (RBM), with low formation temperature and sintering shrinkage was synthesized by incorporation of mixed-rare-earth-oxide (MREO) and mullite seeds. Pure mullite formed with 7.5wt% MREO at 1300°C. Introduction of 5wt% mullite seeds gave RBM with less than 3% shrinkage and 20% porosity. AlPO4-coated Nextel 720/RBM composites were successful fabricated by EPID and pressureless sintering at 1300°C. Significant fiber pullout occurred and the 4-point bend strength was around 170MPa (with 25-30vol% fibers) at room temperature and 1100°C and a Work-of-Fracture 7KJ/m2. At 1200°C, the composite failed in shear due to the MREO-based glassy phase in the matrix. AlPO4-coated Nextel 720 fiber/aluminosilicate (no MREO) showed damage tolerance at 1200°C with a bend strength 170MPa.
机译:电泳沉积(EPD)是一种容易且经济高效的方法,用于制造纤维增强的绿色复合材料。非导电Nextel™720纤维已成功涂覆了瞬态导电聚吡咯亚微米表面层,可直接用作EPD处理中的电极。然而,电场屏蔽限制了颗粒渗透到导电纤维束中,并且它们大部分沉积在纤维束的外表面上。当束大时,沉积后存在中心腔。修改了EPD电池,用于电泳渗透沉积(EPID)。将非导电纤维铺设在电极上,并通过电场驱动乙醇悬浮液中的带电粒子穿过其中,渗透并沉积在电极上,然后堆积到纤维预制棒中并填充其中的空隙。通过恒定电流EPID成功地制造了致密,均匀的绿色纤维复合材料。 EPID过程被建模为毛细管电泳渗透。该过程包括两个步骤:毛细管外部的颗粒电泳和毛细管内部的电泳渗透。由于乙醇穿过毛细管横截面的净流量为零,因此没有电渗透流量对沉积速率的贡献。 Hamaker定律扩展到了EPID工艺,即沉积产率与毛细管内部的电场成比例。总沉积产率由该过程的缓慢步骤控制,即,在毛细管外部的开放悬浮液中的电泳速率。有人提出将AlPO4作为纤维增强陶瓷基复合材料(CMC's)中氧化物纤维和氧化物基体之间的薄弱层。通过在95°C下将Al 3+和HPO42-与尿素化学共沉淀合成AlPO 4纳米颗粒。溶液的pH碱性区域和无定形AlPO4沉淀出窄的粒径分布,平均粒径为50nm。将Nextel 720纤维用阳离子聚电解质预处理,使其具有正表面电荷,然后将其浸入pH 7.5的稀释的,带负电荷的AlPO4胶体悬浮液(0.05M)中。使用静电吸引方案将非晶态AlPO4(在1080°C时结晶为鳞石英和方石英形式)纳米颗粒逐层涂覆​​在纤维上。形成均匀且光滑的涂层,该涂层允许纤维从在1250°C / 20MPa下热压的Nextel 720 /氧化铝微复合材料的基质中拉出。通过掺入混合稀土氧化物(MREO)和莫来石晶种,合成出反应温度低,烧结收缩率低的莫来石(RBM)。在1300°C下由7.5wt%MREO形成的纯莫来石。引入5wt%的莫来石种子使RBM具有小于3%的收缩率和20%的孔隙率。通过EPID和1300°C无压烧结成功制备了AlPO4涂层的Nextel 720 / RBM复合材料。在室温和1100°C以及7KJ / m2的断裂强度下,发生了明显的纤维拉拔,四点弯曲强度约为170MPa(含25-30vol%的纤维)。在1200°C下,由于基体中基于MREO的玻璃相,复合材料的剪切失败。涂有AlPO4的Nextel 720纤维/铝硅酸盐(无MREO)在1200°C的弯曲强度为170MPa的情况下显示出耐损伤性。

著录项

  • 作者

    Bao, Yahua.;

  • 作者单位

    McMaster University (Canada).;

  • 授予单位 McMaster University (Canada).;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号