首页> 外文学位 >An examination of the plausibility of convective turbulence as a source of heating for the intra-cluster medium of cooling-core galaxy clusters.
【24h】

An examination of the plausibility of convective turbulence as a source of heating for the intra-cluster medium of cooling-core galaxy clusters.

机译:对流湍流作为冷却核心星系团簇内部介质的加热源的合理性检查。

获取原文
获取原文并翻译 | 示例

摘要

Recent x-ray observations have led to an important puzzle in the study of galaxy clusters. Although hot intergalactic plasma has a radiative cooling time that is often shorter than a cluster's age, very little intergalactic plasma actually cools to low temperatures. This finding suggests that some heating mechanism largely offsets radiative cooling in the intracluster media (ICNI) of many clusters. This thesis addresses several questions relating to a heating mechanism that has received considerable attention in the literature, namely, turbulent heating. The first part of the thesis develops a semi-empirical model of the ICM in which turbulent dissipation, turbulent diffusion, and thermal conduction balance radiative losses. In the model, the dominant turbulent length scale, l, is left as a free parameter. Using this model, we obtain radial profiles for the turbulent velocity that are consistent with observational estimates. We find that dissipation (diffusion) dominates when l is small (large), that larger velocities are required when the buoyancy of the medium is accounted for, and that the rate of dissipative heating depends sensitively on the rms turbulent velocity, highlighting the need for a self-regulating mechanism. The second part of the thesis explores the possibility that turbulent heating of the ICM arises in a self-regulating way through convection driven by cosmic rays produced by a central active galactic nucleus. We ask how the addition of cosmic-ray pressure alters the convective stability criterion for the ICM. We carry out a local stability analysis including the effects of finite thermal conduction and finite cosmic-ray diffusivity each occurring parallel to the equilibrium magnetic field. We obtain stability criteria for the high-beta and large-perpendicular-wave-number limits and find that an outwardly decreasing cosmic-ray pressure and an outwardly decreasing magnetic pressure are both destabilizing. We explain the stability criteria using simply physical arguments and elucidate the stability criteria further by obtaining approximate analytic solutions to the dispersion relation, which we check by comparing to numerical solutions of the dispersion relation. Our findings support the suggestion that turbulence and convection may play a role in the heating of the ICM.
机译:最近的X射线观察导致了星系团研究中的一个重要难题。尽管热的星系间等离子体的辐射冷却时间通常短于星团的寿命,但实际上很少有星系间等离子体冷却至低温。这一发现表明,某些加热机制大大抵消了许多簇的簇内介质(ICNI)中的辐射冷却。本论文解决了与加热机理有关的几个问题,这些问题在文献中已引起广泛关注,即湍流加热。论文的第一部分建立了ICM的半经验模型,其中湍流耗散,湍流扩散和热传导平衡了辐射损耗。在模型中,主要的湍流长度尺度l被保留为自由参数。使用该模型,我们获得了湍流速度的径向剖面,该剖面与观测估计一致。我们发现,当l小(大)时,耗散(扩散)占主导地位;考虑到介质的浮力,则需要更大的速度;耗散加热速率敏感地取决于均方根湍流速度,这突出说明了对一种自我调节机制。论文的第二部分探讨了ICM湍流加热的可能性,它是通过由中央活动银河核产生的宇宙射线驱动的对流以自调节的方式产生的。我们问宇宙射线压力的增加如何改变ICM的对流稳定性标准。我们进行了局部稳定性分析,包括有限热传导和有限宇宙射线扩散率的影响,每种影响均与平衡磁场平行发生。我们获得了高贝塔数和大垂直波数限制的稳定性标准,发现向外减小的宇宙射线压力和向外减小的磁压力都不稳定。我们仅使用物理参数来解释稳定性标准,并通过获得色散关系的近似解析解进一步阐明稳定性标准,然后通过与色散关系的数值解进行比较来对其进行检查。我们的发现支持了湍流和对流可能在ICM加热中起作用的建议。

著录项

  • 作者

    Dennis, Timothy J.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Physics Astronomy and Astrophysics.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号