首页> 外文学位 >Effective thermal conductivity of composite fluidic thermal interface materials.
【24h】

Effective thermal conductivity of composite fluidic thermal interface materials.

机译:复合流体热界面材料的有效导热系数。

获取原文
获取原文并翻译 | 示例

摘要

Thermally enhanced greases made of dispersions of small conductive particles suspended in fluidic polymers can offer significant advantages when used as a thermal interface material (TIM) in microelectronics cooling applications. A fundamental problem which remains to be addressed is how to predict the effective thermal conductivity of these materials, an important parameter in establishing the bulk resistance to heat flow through the TIM.;Numerical work indicates that the models show generally good agreement for the various geometric dispersions, in particular for particles with low to moderate aspect ratios. The numerical results approach the lower bound as the conductivity ratio is increased. An important observation is that orienting the particles in the direction of heat flow leads to substantial enhancement in the thermal conductivity of the base fluid. Clustering leads to a small enhancement in effective thermal conductivity beyond that which is predicted for systems composed of regular arrays of particles. Although significant enhancement is possible if the clusters are large, in reality, clustering to the extent that solid agglomerates span large distances is unlikely since such clusters would settle out of the fluid.;In addition, experimental work available in the literature indicates that the agreement between the selected experimental data and the geometric mean of the upper and lower bounds for a sphere in a unit cell are in excellent agreement, even for particles which are irregular in shape.;The following study presents the application of two simple theorems for establishing bounds on the effective thermal conductivity of such inhomogeneous media. These theorems are applied to the development of models which are the geometric means of the upper and lower bounds for effective thermal conductivity of base fluids into which are suspended particles of various geometries.
机译:当在微电子冷却应用中用作热界面材料(TIM)时,由悬浮在流体聚合物中的小导电颗粒的分散体制成的热增强润滑脂具有明显的优势。尚待解决的一个基本问题是如何预测这些材料的有效导热系数,这是建立对通过TIM的热流的整体阻力的重要参数。;数值研究表明,模型对于各种几何形状都表现出良好的一致性分散体,特别是对于低至中等长径比的颗粒。随着电导率的增加,数值结果接近下限。一个重要的观察结果是,沿热流方向定向粒子会导致基础流体的导热率大大提高。聚集导致有效导热率的小幅提高,超过了由规则的颗粒阵列组成的系统所预期的。尽管如果团簇较大,则可能会显着增强效果,但实际上,由于团簇会从流体中沉降出来,因此不太可能将团聚体聚集到较大的距离,因为这样的团簇会沉淀出来;此外,文献中的实验工作表明一致性所选实验数据与单位晶格中球体的上下边界的几何平均值之间的一致性非常好,即使对于形状不规则的粒子也是如此。以下研究提出了两个简单定理在建立边界中的应用这种非均质介质的有效导热系数。这些定理可用于模型的开发,这些模型是有效流体的基础流体有效导热系数的上下限的几何手段,各种几何形状的悬浮颗粒均流入该流体中。

著录项

  • 作者

    Karayacoubian, Paul.;

  • 作者单位

    University of Waterloo (Canada).;

  • 授予单位 University of Waterloo (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 M.A.Sc.
  • 年度 2006
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号