首页> 外文学位 >Seismic geometric attribute analysis for fracture characterization: New methodologies and applications.
【24h】

Seismic geometric attribute analysis for fracture characterization: New methodologies and applications.

机译:裂缝特征的地震几何属性分析:新方法和应用。

获取原文
获取原文并翻译 | 示例

摘要

In 3D subsurface exploration, detection of faults and fractures from 3D seismic data is vital to robust structural and stratigraphic analysis in the subsurface, and great efforts have been made in the development and application of various seismic attributes (e.g. coherence, semblance, curvature, and flexure). However, the existing algorithms and workflows are not accurate and efficient enough for robust fracture detection, especially in naturally fractured reservoirs with complicated structural geometry and fracture network. My Ph.D. research is proposing the following scopes of work to enhance our capability and to help improve the resolution on fracture characterization and prediction.;For discontinuity attribute, previous methods have difficulty highlighting subtle discontinuities from seismic data in cases where the local amplitude variation is non-zero mean. This study proposes implementing a gray-level transformation and the Canny edge detector for improved imaging of discontinuities. Specifically, the new process transforms seismic signals to be zero mean and helps amplify subtle discontinuities, leading to an enhanced visualization for structural and stratigraphic details. Applications to various 3D seismic datasets demonstrate that the new algorithm is superior to previous discontinuity-detection methods. Integrating both discontinuity magnitude and discontinuity azimuth helps better define channels, faults and fractures, than the traditional similarity, amplitude gradient and semblance attributes.;For flexure attribute, the existing algorithm is computationally intensive and limited by the lateral resolution for steeply-dipping formations. This study proposes a new and robust volume-based algorithm that evaluate flexure attribute more accurately and effectively. The algorithms first volumetrically fit a cubic surface by using a diamond 13-node grid cell to seismic data, and then compute flexure using the spatial derivatives of the built surface. To avoid introducing interpreter bias, this study introduces a new workflow for automatically building surfaces that best represent the geometry of seismic reflections. A dip-steering approach based on 3D complex seismic trace analysis is implemented to enhance the accuracy of surface construction and to reduce computational time. Applications to two 3D seismic surveys demonstrate the accuracy and efficiency of the new flexure algorithm for characterizing faults and fractures in fractured reservoirs.;For robust fracture detection, this study presents a new methodology to compute both magnitude and directions of most extreme flexure attribute. The new method first computes azimuthal flexure; and then implements a discrete azimuth-scanning approach to finding the magnitude and azimuth of most extreme flexure. Specially, a set of flexure values is estimated and compared by substituting all possible azimuths between 0 degree (Inline) and 180 degree (Crossline) into the newly-developed equation for computing azimuthal flexure. The added value of the new algorithm is demonstrated through applications to the seismic data set from Teapot Dome of Wyoming. The results indicate that most extreme flexure and its associated azimuthal directions help reveal structural complexities that are not discernible from conventional coherence or geometric attributes.;Given that the azimuth-scanning approach for computing maximum/minimum flexure is time-consuming, this study proposes fracture detection using most positive/negative flexures; since for gently-dipping structures, most positive is similar to maximum flexure while most negative flexure to minimum flexure. After setting the first reflection derivatives (or apparent dips) to be zero, the localized reflection is rotated to be horizontal and thereby the equation for computing azimuthal flexure is significantly simplified, from which a new analytical approach is proposed for computing most positive/negative flexures. Comparisons demonstrate that positive/negative flexures can provide quantitative fracture characterization similar to most extreme flexure, but the computation is 8 times faster than the azimuth-scanning approach.;Due to the overestimate by using most positive/negative flexure for fracture characterization, 3D surface rotation is then introduced for flexure extraction in the presence of structural dip, which makes it possible for solving the problem in an analytical manner. The improved computational efficiency and accuracy is demonstrated by both synthetic testing and applications to real 3D seismic datasets, compared to the existing discrete azimuth-scanning approach.;Last but not the least, strain analysis is also important for understanding structural deformation, predicting natural fracture system, and planning well bores. Physically, open fractures are most likely to develop in extensional domains whereas closed fractures in compressional ones. The beam model has been proposed for describing the strain distribution within a geological formation with a certain thickness, in which, however, the extensional zone cannot be distinguished from the compression one with the aid of traditional geometric attributes, including discontinuity, dip, and curvature. To resolve this problem, this study proposes a new algorithm for strain reconstruction using apparent dips at each sample location within a seismic cube.
机译:在3D地下勘探中,从3D地震数据中检测断层和裂缝对于地下的稳固结构和地层分析至关重要,并且已在开发和应用各种地震属性(例如相干性,相似性,曲率和弯曲)。但是,现有的算法和工作流程不足以进行稳健的裂缝检测,特别是在结构几何形状和裂缝网络复杂的天然裂缝储层中,其准确性和效率不足。我的博士学位研究提出了以下工作范围,以增强我们的能力并帮助提高裂缝表征和预测的分辨率。;对于不连续性属性,在局部振幅变化不为零的情况下,先前的方法难以突出地震数据中的细微不连续性意思。这项研究建议实现灰度转换和Canny边缘检测器,以改善不连续性的成像。具体而言,新过程将地震信号转换为零均值,并有助于放大细微的不连续性,从而增强了结构和地层细节的可视化效果。在各种3D地震数据集上的应用表明,该新算法优于以前的不连续检测方法。与传统的相似度,幅度梯度和相似性属性相比,将不连续性幅度和不连续性方位角都集成在一起有助于更好地定义通道,断层和裂缝。对于挠曲属性,现有算法计算量大,并且受陡倾地层横向分辨率的限制。这项研究提出了一种新的,健壮的基于体积的算法,可以更准确,更有效地评估弯曲属性。该算法首先通过使用13节点的菱形网格单元对地震数据进行体积拟合,然后使用已构建表面的空间导数计算弯曲。为了避免引入解释器偏差,本研究引入了一种新的工作流程,用于自动构建最能代表地震反射几何形状的表面。实施了基于3D复杂地震轨迹分析的倾角转向方法,以提高表面构造的精度并减少计算时间。在两个3D地震勘测中的应用证明了用于表征裂缝性储层断层和裂缝的新挠曲算法的准确性和效率。为进行稳健的裂缝检测,本研究提出了一种新的方法来计算最极端挠曲属性的幅度和方向。新方法首先计算方位角挠度;然后实施离散的方位角扫描方法以找到最大挠曲度的大小和方位角。特别是,通过将0度(内联线)和180度(交叉线)之间的所有可能方位角代入新开发的用于计算方位角挠曲的方程式,可以估算和比较一组挠曲值。通过将其应用于怀俄明州茶壶穹顶的地震数据集,证明了该新算法的附加价值。结果表明,大多数极限挠曲及其相关的方位角方向有助于揭示传统相干性或几何属性无法识别的结构复杂性;;鉴于计算最大/最小挠曲的方位扫描方法耗时,本研究提出了断裂使用大多数正/负弯曲进行检测;因为对于轻浸的结构,最大的正向弯曲类似于最大弯曲,而最大的负向弯曲类似于最小弯曲。在将第一反射导数(或视在倾角)设置为零之后,将局部反射旋转为水平,从而显着简化了计算方位角挠曲的方程式,从中提出了一种用于计算大多数正/负挠度的新分析方法。比较表明,正/负挠曲可以提供与大多数极限挠曲相似的定量断裂特征,但计算速度比方位扫描方法快8倍;由于使用大多数正/负挠曲进行断裂特征的高估,3D表面然后引入旋转以在存在结构倾角的情况下进行挠曲提取,这使得有可能以分析方式解决问题。与现有的离散方位角扫描方法相比,综合测试和将其应用于实际3D地震数据集都证明了改进的计算效率和准确性。最后但并非最不重要的是,应变分析对于理解结构变形,预测自然裂缝也很重要系统,并计划井眼。身体上,开放性裂缝最可能在伸展区域发生,而闭合性裂缝最可能在挤压性区域发生。已经提出了梁模型来描述具有一定厚度的地质构造内的应变分布,但是,借助于传统的几何属性,包括不连续性,倾角和曲率,不能将延伸区与压缩区区分开。 。为了解决这个问题,本研究提出了一种新的应变重建算法,该算法使用地震立方体内每个样本位置的明显倾角来进行应变重建。

著录项

  • 作者

    Di, Haibin.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Geophysics.;Geology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号