首页> 外文学位 >Environmentally Malleable Epigenomic Regions in the Mammalian Brain.
【24h】

Environmentally Malleable Epigenomic Regions in the Mammalian Brain.

机译:哺乳动物大脑中环境可塑性的表观基因组区域。

获取原文
获取原文并翻译 | 示例

摘要

Understanding the development of epigenetic patterns that underlie neural development and differentiation is an essential foundation for understanding what occurs in "abnormal" situations. DNA methylation, in concert with other epigenetic regulators, controls the accessibility of transcription factors to DNA and/or their function. While extensively studied in neuronal progenitors in vitro, the role of methylation/demethylation in neuronal lineage/subtype specification in vivo is not known. By profiling two distinct neuronal lineages, and five neuron subtypes in the hippocampus and striatum, we uncovered a set of five principles that govern DNA methylation-dynamics in neurodevelopment. By dividing neurodevelopment to three alternating methylation and demethylation periods and applying the principles to each of these stages, we created a matrix that comprehensively describes the targets, genomic contexts, functional consequences and putative mechanisms of methylation/demethylation events. The overarching theme is that the developmental methylation program is remarkably similar in the hippocampus and striatum, with significant divergence only occurring during subtype specification. Our matrix can be cross-referenced with disease-associated methylation changes to specify possible events and underlying principles compromised in disease.;Adverse environmental conditions, particularly during early life, are associated with increased risk for behavioral and/or psychiatric disorders. However, the molecular basis that can potentially link environmental conditions to psychopathologies are unknown, complicating diagnosis and therapeutic measures. We identified differentially methylated regions (DMRs) in mammalian offspring exposed to an adverse maternal environment associated with anxiety in both the mother and offspring. We hypothesized the presence of metastable "hotspots" in the genome that display an inherent sensitivity to environmental cues. These hotspots would enable an adaptive/maladaptive molecular response to multiple environmental conditions by modifying appropriate gene expression patterns and cellular phenotypes. Using several animal models of early life adversities, which result in a common offspring anxiety phenotype, we used genome-wide DNA methylation sequencing to detect common environmentally sensitive DMRs (E-DMRs). E-DMRs displayed several DNA features including: Exonic enrichment, intermediate methylation, and enhancer activity. Interestingly, E-DMRs did not perturb the overall patterning of DNA methylation that takes place during neural development. The experience dependent variations in DNA methylation at E-DMRs may prime the genome for differential transcriptional response to later events. This metaplasticity may be especially important in brain regions responsible for processing environmental input to elicit a behavioral response.;Since maternal conditions impact the offspring during gametogenesis and through fetal/early-postnatal life, the resultant phenotype is likely the aggregate of consecutive germline and somatic effects; a concept that hasn't been previously studied. We dissected a complex maternally-transmitted phenotype, reminiscent of comorbid generalized anxiety/depression, to elementary behaviors/domains and their transmission mechanisms. We show that four anxiety/stress-reactive traits are transmitted via independent iterative-somatic and gametic epigenetic mechanisms across multiple generations. Somatic/gametic transmission alters DNA methylation at enhancers within synaptic genes whose functions can be linked to the behavioral-traits. Traits have generation-dependent penetrance and sex-specificity resulting in pleiotropy, often seen in psychiatry. A transmission-pathway based concept can refine current inheritance models of psychiatric diseases and facilitate the development of better animal models and new therapeutic approaches.
机译:了解作为神经发育和分化基础的表观遗传模式的发展,是理解“异常”情况下发生情况的重要基础。 DNA甲基化与其他表观遗传调控因子共同控制着转录因子对DNA的可及性和/或其功能。尽管在体外神经元祖细胞中进行了广泛研究,但是甲基化/去甲基化在体内神经元谱系/亚型规范中的作用尚不清楚。通过分析海马和纹状体中两个不同的神经元谱系和五个神经元亚型,我们发现了控制神经发育中DNA甲基化动力学的五项原则。通过将神经发育划分为三个交替的甲基化和去甲基化阶段,并将原理应用于这些阶段中的每个阶段,我们创建了一个矩阵,该矩阵全面描述了甲基化/脱甲基事件的靶标,基因组背景,功能后果和推定机制。最重要的主题是,在海马和纹状体中,发育甲基化程序非常相似,只有在亚型确定期间才会出现明显的差异。我们的矩阵可以与疾病相关的甲基化变化进行交叉引用,以指定可能的事件和疾病中折衷的基本原理。不利的环境条件,尤其是在早期生活中,与行为和/或精神疾病的风险增加相关。然而,将环境条件潜在地与精神病理学联系起来的分子基础是未知的,这使诊断和治疗措施复杂化。我们确定了哺乳动物后代中暴露于与母亲和后代焦虑相关的不利母亲环境的差异甲基化区域(DMR)。我们假设基因组中存在亚稳态的“热点”,该热点表现出对环境线索的内在敏感性。这些热点将通过修改适当的基因表达模式和细胞表型,实现对多种环境条件的适应性/适应性分子反应。使用几种导致早期后代焦虑表型的早期动物逆境动物模型,我们使用了全基因组DNA甲基化测序技术来检测常见的环境敏感DMR(E-DMR)。 E-DMRs显示了几种DNA特征,包括:外显子富集,中间甲基化和增强子活性。有趣的是,E-DMR不会干扰神经发育过程中发生的DNA甲基化的整体模式。 E-DMR处依赖于经验的DNA甲基化变异可能会引发基因组发生差异性转录反应。这种可塑性在负责处理环境输入以引发行为反应的大脑区域中尤其重要。由于母体状况会影响配子发生期间以及通过胎儿/产后早期生活的后代,因此产生的表型可能是连续种系和体细胞的集合效果;一个以前没有研究过的概念。我们将基本的行为/结构域及其传播机制分解为一个复杂的由母亲传播的表型,使人联想到并存的普遍性焦虑/抑郁。我们表明,四个焦虑/压力反应性状是通过独立的迭代体细胞和配子表观遗传机制跨多个世代传播的。体细胞/配子传播会改变突触基因内增强子的DNA甲基化,其功能可能与行为特征有关。性状具有世代相依的外在表现和性别特异性,导致多效性,这在精神病学中很常见。基于传播途径的概念可以完善当前的精神疾病遗传模型,并促进更好的动物模型和新治疗方法的发展。

著录项

  • 作者

    Klein, Shifra Liba.;

  • 作者单位

    Weill Medical College of Cornell University.;

  • 授予单位 Weill Medical College of Cornell University.;
  • 学科 Molecular biology.;Neurosciences.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号