首页> 外文学位 >Probing exotic physics with pulsating white dwarfs.
【24h】

Probing exotic physics with pulsating white dwarfs.

机译:用脉动的白矮星探测奇异物理学。

获取原文
获取原文并翻译 | 示例

摘要

In the present work, I combine observations of pulsating white dwarf stars with theoretical models of these stars to constrain the mass of axions and the emission rate of plasmon neutrinos (neutrinos that result from the decay of a photon coupled to a plasma). Axions, while hypothetical, are of great interest in Astrophysics because they are good candidates for the mysterious dark matter that pervades our universe. Measuring plasmon neutrino emission rates gives us a unique way to test the theory of weak interactions in the Standard Model of particles physics.; Axions arise from an elegant solution to a problem with the Standard Model of particle physics. Along with supersymmetric particles, axions are currently favored candidates for dark matter. But they have not been discovered (neither have supersymmetric particles) and the theory of axions fails to place any constraint on their mass. The possible contribution of axions to dark matter depends of course on their mass. The mass of axions determines how strongly they interact with the matter we know, with more massive axions interacting more strongly. In turn, the stronger the interaction of axions with matter or light, the larger their emission rate. With pulsating white dwarfs, we can constrain the axion emission rates and therefore their mass.; While we know a lot about neutrinos produced in nuclear reactions inside the Sun, plasmon decay has never been detected. This is because plasmon neutrino emission rates are expected to be significant only in very dense plasmas, such as in the degenerate interiors of white dwarfs. We cannot reproduce those conditions in the lab, and they are also not present in our nearest neutrino emitter, the Sun.; Both axions and plasmon neutrinos should stream freely out of white dwarfs, contributing efficiently to their cooling. We can measure the cooling rate of pulsating white dwarfs by measuring the rate at which the pulsation period of a given mode slows down with time (P˙). The faster the cooling, the larger P˙ is. By comparing the P˙ theoretically expected from the cooling with the P˙ we actually measure, we can deduce the emission the emission rates of plasmon neutrinos and axions and the mass of axions.; I begin by providing useful background information. I talk about non-radial stellar oscillations, give an overview of the observational methods behind the determination of ˙P˙'s, and list the P˙'s we have so far. Then I describe the approach I took to asteroseismology. Computers have become powerful enough that I was able for the first time to perform a brute force, systematic fine grid search of the relevant stellar parameter space. Next I present the theory behind axions, connect them to the dark matter problem through axion cosmology, and describe experiments and astrophysical observations (other than pulsating white dwarfs) that have already helped place upper limits on the axion mass. None of those attempts measures up to the method presented in the present work, where I use my own best fit models of G117-B15A (fit in parallel with R548) and the P˙ measured by Kepler et al. (2005c) to place a strong upper limit on the axion mass of 26.5 meV. I conclude with a detailed discussion of plasmon neutrinos and derive constraints we can very soon hope to place on their production rates, using the hot DBV EC20058. Along the way, I perform detailed asteroseismological analyses of G117-B15A, her sister R548, and of EC20058 and gain further physical insight into what determines the pulsation periods in those stars.
机译:在当前的工作中,我将脉动白矮星的观测结果与这些恒星的理论模型相结合,以限制轴突的质量和等离激元中微子(由于耦合等离子体的光子的衰变而产生的中微子)的发射速率。尽管是假设性的,但轴距在天体物理学中却引起了极大的兴趣,因为它们是遍布我们宇宙的神秘暗物质的良好候选者。测量等离激元中微子发射速率为我们提供了一种独特的方法来测试粒子物理学标准模型中的弱相互作用理论。轴力来自对粒子物理标准模型问题的完美解决方案。除超对称粒子外,轴子目前是暗物质的首选。但是它们尚未被发现(都没有超对称粒子),并且轴子理论未能对其质量施加任何约束。轴对暗物质的可能贡献当然取决于其质量。轴的质量决定了它们与我们所知的事物相互作用的强度,而更大质量的轴之间的相互作用则更为强烈。反过来,轴与物质或光的相互作用越强,其发射速率就越大。使用脉动的白矮星,我们可以限制轴突的发射速率,从而限制其质量。尽管我们对太阳内部核反应中产生的中微子了解很多,但从未检测到等离子体激元衰减。这是因为仅在非常密集的等离子体中,例如在白矮星的退化内部,等离激元中微子的发射速率才有意义。我们无法在实验室中再现这些条件,并且它们也没有出现在我们最近的中微子发射器太阳中。轴子和等离激元中微子都应从白矮星中自由流出,从而有效地冷却它们。我们可以通过测量给定模式的脉动周期随时间减慢的速率来测量脉动白矮星的冷却速率(P&)。冷却越快,P&点越大。是。通过比较点从理论上讲,使用P点进行冷却我们实际上可以测量,我们可以推断出等离激元中微子和轴的发射速率以及轴的质量。我首先提供有用的背景信息。我谈论了非径向恒星振荡,概述了确定P背后的观测方法,并列出了到目前为止的P。然后,我描述了我在星震学方面采取的方法。计算机已经变得足够强大,以至于我第一次能够对相关的恒星参数空间进行强力的系统的精细网格搜索。接下来,我介绍轴的背后的理论,通过轴宇宙学将它们与暗物质问题联系起来,并描述已经帮助对轴质量施加上限的实验和天体观测(除了脉动的白矮星之外)。这些尝试都没有达到本工作中提出的方法的水平,在该工作中,我使用了我自己的最佳拟合模型G117-B15A(与R548并行拟合)和P&D。由开普勒等人测量。 (2005c)对26.5 meV的轴突质量设置了较高的上限。最后,我将对等离激元中微子进行详细的讨论,并得出结论,我们可以很快使用热的DBV EC20058来限制它们的生产率。在此过程中,我对G117-B15A,其姐姐R548和EC20058进行了详细的地震学分析,并进一步了解了决定这些恒星脉动周期的因素。

著录项

  • 作者

    Kim, Agnes.;

  • 作者单位

    The University of Texas at Austin.$bAstronomy.;

  • 授予单位 The University of Texas at Austin.$bAstronomy.;
  • 学科 Physics Astronomy and Astrophysics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 277 p.
  • 总页数 277
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 天文学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号