首页> 外文学位 >Medium access control protocols for multi-hop wireless ad hoc networks.
【24h】

Medium access control protocols for multi-hop wireless ad hoc networks.

机译:多跳无线ad hoc网络的媒体访问控制协议。

获取原文
获取原文并翻译 | 示例

摘要

Wireless networking has become an increasingly active research area over the past decade. Recent advances in silicon manufacturing technology have enabled a steady increase in wireless communication capabilities yet still reducing form-factor. For instance, highly integrated, small foot-print, single-chip CMOS radios that can support very high data-rates (up to 480Mbps) are now commercially available [1] and the industry is moving towards multi-gigabit data rates using advanced coding/modulation techniques and new technologies [56,65].;Such technological advances will enable new classes of applications for MANETs that require high application-level throughput and quality-of-service (QoS). Some examples include multimedia streaming, large content transfer, wireless storage area networks, etc. Consequently, the current trend is that new physical layer (PHY) technologies have been moving the fundamental limits challenging development and deployment of high data-rate, QoS-sensitive applications from the PHY to the medium access control (MAC) layer.;On the other hand, these advanced PHY techniques often result in higher energy requirements. For instance, the use of multiple RF chains and advanced decoding techniques to improve PHY performance increase power consumption of the receive operation significantly. To support better energy management, recent radios provide finer-grained power modes that selectively turns on portions of the radio transceiver. Radio power mode control at the MAC layer is thus critical in improving the battery life of the node. The state-of-the-art in medium access for MANETs is far from addressing the requirements imposed by upcoming applications and PHY technological advances.;Our research focus is to bridge this gap and develop a medium access scheduling framework that: (1) is application aware by adapting to changing traffic patterns and satisfying QoS requirements, (2) is self-organizing by adapting to current node state, and connectivity, (3) improves channel utilization and spatial re-use by multi-channel usage and collision-avoidance, and (4) is energy efficient.;The initial motivation for our research on MAC protocols is derived from our work on reliable multicast transport in MANETs. In this work, we introduce the Reliable Adaptive Congestion-controlled Transport protocol, or ReACT, that demonstrates the importance of optimizations at the MAC layer to improve the reliability at the transport layer. ReACT, combines source-based congestion- and error control with receiver-initiated localized recovery. While the latter attempts to recover localized losses (e.g., caused by transmission errors), the former is invoked only for losses and congestion that could not be recovered locally (e.g., caused by global congestion). Loss differentiation is an important component of ReACT and uses medium access control (MAC) layer information to distinguish between different types of losses. Through simulations, we evaluated ReACT's performance and compared it with RALM, a strictly source-based protocol. As our simulation results indicate, significant improvement in throughput and reliability could be achieved by using feedback from the MAC layer to differentiate congestion losses from other losses.;The Traffic-Adaptive Medium Access (TRAMA) protocol [42,43] was the first proposal to implement energy-aware schedule-based medium access. TRAMA reduces energy consumption by ensuring that unicast and broadcast transmissions incur no collisions, and by allowing nodes to assume a low-power, idle state whenever they are not transmitting or receiving. TRAMA assumes that time is slotted and uses a distributed election scheme based on information about traffic at each node to determine which node can transmit at a particular time slot. Using traffic information, TRAMA avoids assigning time slots to nodes with no traffic to send, and also allows nodes to determine when they can switch off to idle mode and not listen to the channel. TRAMA is shown to be fair and correct, in that no idle node is an intended receiver and no receiver suffers collisions. An analytical model [43] to quantify the performance of TRAMA is presented and the results are verified by simulation. The performance of TRAMA is evaluated through extensive simulations using both synthetic- as well as sensor-network scenarios. The results indicate that TRAMA outperforms contention-based protocols (CSMA, 802.11 and S-MAC) and also static scheduled-access protocols (NAMA) with significant energy savings.;FLAMA [41] avoids explicit traffic information exchange and employs a much simpler election algorithm than TRAMA. FLAMA does not require explicit schedule announcements during scheduled access periods. Alternatively, application-specific traffic information is exchanged among nodes during random access to reflect the driving application's specific traffic patterns, or flows. This allows FLAMA to still adapt to changes in traffic behavior and topology (e.g., node failure). FLAMA uses flow information to establish transmission schedules for each node. Additionally, FLAMA achieves traffic adaptiveness by assigning slots to a node depending on the amount of traffic generated by that node. This is accomplished by assigning node weights based on the incoming and outgoing flows. Nodes with more outgoing flows are given higher weights (i.e., more slots); the net effect is that nodes that produce/forward more traffic are assigned more slots.;FLAMA is simple enough so that it can be run by nodes with limited processing, memory, communication, and power capabilities. We evaluate the performance of FLAMA through simulations and test-bed experimentation. Simulation results indicate that, in terms of reliability, queuing delay and energy savings, FLAMA outperforms TRAMA, the first traffic-adaptive, schedule-based MAC proposed for sensor networks, and S-MAC, a contention-based energy-efficient MAC. FLAMA achieves significantly smaller delays (up to 75 times) when compared to TRAMA with significant improvement in energy savings and reliability, demonstrating the importance of application-awareness in medium access scheduling. Our simulation and test-bed results show that FLAMA achieves better end-to-end reliability with significant energy savings compared to S-MAC.;All previously mentioned protocols are designed to work with a single channel. Given that most commercially available radios to-date provide multiple orthogonal channels, protocols should make use of this feature to schedule parallel transmissions within a two-hop neighborhood, thus improving channel utilization. We introduce the Multi-Channel FLAMA (or mFLAMA), that extends the scheduling algorithm of FLAMA to support multiple channels. We compare the performance of mFLAMA with that of FLAMA by simulations, to illustrate the benefit in channel utilization when multiple channels are used for communication.;Finally, we present a new framework for energy-efficient channel access. One of the main features of the proposed framework, or DYNAMMA for DYNAmic Multi-channel Medium Access, is its ability to accommodate and adapt to different application traffic pat terns in an efficient fashion, i.e., minimizing protocol overhead and delivery delay. This is an important contribution as it addresses a drawback inherent to scheduled-access MAC protocols. In DYNAMMA's current implementation, traffic adaptation is done by explicit traffic announcements (in a considerably more efficient way, than existing scheduled-access protocols such as TRAMA [42]). Besides "explicit" adaptation, the flexibility provided by DYNAMMA's framework allows it to accommodate "implicit" traffic adaptation strategies, for example, using learning algorithms, which will further reduce protocol overhead.;We evaluate the performance of DYNAMMA by extensive simulations for different application scenarios. The results from our simulation study shows that DYNAMMA achieves significantly lesser queueing delay than TRAMA and provides high channel utilization and energy savings when compared to TRAMA and 802.11. We also present a generic MAC development test-bed for evaluating scheduled-access MAC protocols using UWB physical layer and we evaluate the performance of DYNAMMA using our FPGA-based test-bed.;In future work, DYNAMMA framework can be used for incorporating traffic prediction to establish the flow information. This can potentially reduce the queueing delay introduced due the scheduling. Another direction of work is to improve the transmission scheduling algorithm presented in the DYNAMMA framework to provide guarantied delivery delays.
机译:在过去的十年中,无线网络已成为一个越来越活跃的研究领域。硅制造技术的最新进展已实现无线通信功能的稳定增长,但仍在减小尺寸。例如,现在可以商用获得高度集成的,占地小,单芯片CMOS无线电设备,这些无线电设备可以支持非常高的数据速率(高达480Mbps)[1],并且业界正朝着使用高级编码的千兆比特数据速率迈进。调制技术和新技术[56,65]。这些技术进步将为需要高应用程序级别吞吐量和服务质量(QoS)的MANET提供新的应用程序类别。一些示例包括多媒体流,大型内容传输,无线存储区域网络等。因此,当前的趋势是新的物理层(PHY)技术已经突破了基本限制,挑战了对高数据速率,QoS敏感的开发和部署。从PHY到媒体访问控制(MAC)层的应用。另一方面,这些先进的PHY技术通常导致更高的能源需求。例如,使用多个RF链和先进的解码技术来改善PHY性能会显着增加接收操作的功耗。为了支持更好的能量管理,最近的无线电提供了更细粒度的功率模式,可以有选择地打开无线电收发器的各个部分。因此,MAC层的无线电功率模式控制对于延长节点的电池寿命至关重要。 MANET的媒体访问的最新技术还不能解决即将到来的应用程序和PHY技术进步带来的要求。;我们的研究重点是弥合这一差距,并开发出以下媒体访问调度框架:(1)通过适应不断变化的流量模式和满足QoS要求来感知应用程序;(2)通过适应当前节点状态和连接来进行自组织;(3)通过多信道使用和避免冲突来提高信道利用率和空间重用(4)是节能的。;我们对MAC协议进行研究的最初动机来自于我们对MANET中可靠的多播传输的研究。在这项工作中,我们介绍了可靠的自适应拥塞控制传输协议,即ReACT,该协议证明了在MAC层进行优化以提高传输层可靠性的重要性。 ReACT将基于源的拥塞和错误控制与接收器启动的本地恢复结合在一起。后者尝试恢复局部损失(例如,由传输错误引起的损失),而前者仅针对无法在本地恢复的损失和拥塞(例如,由全局拥塞引起的)调用。损耗区分是ReACT的重要组成部分,它使用媒体访问控制(MAC)层信息来区分不同类型的损耗。通过仿真,我们评估了ReACT的性能,并将其与RALM(一种严格基于源的协议)进行了比较。如我们的仿真结果所示,通过使用MAC层的反馈将拥塞损失与其他损失区分开来,可以显着提高吞吐量和可靠性。;流量自适应媒体访问(TRAMA)协议[42,43]是第一个提议实施基于能源意识的基于时间表的媒体访问。 TRAMA通过确保单播和广播传输不会发生冲突,并通过使节点在不进行发送或接收时处于低功率,空闲状态来减少能耗。 TRAMA假定时间已分配时隙,并根据有关每个节点上流量的信息使用分布式选举方案来确定哪个节点可以在特定时隙发送。使用流量信息,TRAMA可以避免为没有流量发送的节点分配时隙,还可以让节点确定何时可以关闭到空闲模式并且不收听信道。 TRAMA被证明是公正和正确的,因为没有空闲节点是预期的接收者,并且没有接收者遭受冲突。提出了量化TRAMA性能的分析模型[43],并通过仿真验证了结果。通过使用综合以及传感器网络方案进行的广泛仿真,可以评估TRAMA的性能。结果表明,TRAMA的性能优于基于竞争的协议(CSMA,802.11和S-MAC)以及静态调度访问协议(NAMA),可显着节省能源。FLAMA[41]避免了显式的交通信息交换,并且采用了更简单的选择算法比TRAMA。 FLAMA在计划的访问期间不需要明确的计划通知。或者,在随机访问期间在节点之间交换特定于应用程序的交通信息,以反映驾驶应用程序的特定交通模式或流量。这使FLAMA仍然能够适应流量行为和拓扑的变化(例如,节点故障)。 FLAMA使用流信息来建立每个节点的传输计划。另外,FLAMA通过根据该节点生成的通信量为该节点分配时隙来实现通信量自适应。这是通过基于传入和传出流分配节点权重来实现的。具有更多输出流的节点将获得更高的权重(即,更多的时隙);最终结果是为产生/转发更多流量的节点分配了更多的插槽。FLAMA非常简单,因此可以由处理,内存,通信和电源功能有限的节点运行。我们通过仿真和试验台实验评估FLAMA的性能。仿真结果表明,就可靠性,排队延迟和节能而言,FLAMA的性能优于TRAMA(即为传感器网络提出的首个基于流量的基于调度的MAC)和S-MAC(基于竞争的高效MAC)。与TRAMA相比,FLAMA的延迟明显缩短(最多75倍),在节能和可靠性方面有了显着改善,这证明了应用感知在媒体访问调度中的重要性。我们的仿真和试验台结果表明,与S-MAC相比,FLAMA实现了更好的端到端可靠性,并且节省了大量能源。前面提到的所有协议都旨在与单个通道配合使用。鉴于迄今为止,大多数商用无线电设备都提供了多个正交信道,协议应利用此功能来调度两跳邻域内的并行传输,从而提高信道利用率。我们介绍了多通道FLAMA(或mFLAMA),它扩展了FLAMA的调度算法以支持多个通道。我们通过仿真比较了mFLAMA和FLAMA的性能,以说明当使用多个信道进行通信时在信道利用率方面的好处。最后,我们提出了一种节能信道访问的新框架。所提出的框架或用于DYNAmic多通道媒体访问的DYNAMMA的主要特征之一是其以有效的方式适应和适应不同应用程序流量模式的能力,即,使协议开销和传递延迟最小。这是重要的贡献,因为它解决了计划访问MAC协议固有的缺点。在DYNAMMA的当前实现中,流量调整是通过明确的流量通告来完成的(比TRAMA [42]等现有的调度访问协议要有效得多)。除了“显式”自适应之外,DYNAMMA框架提供的灵活性还使其能够适应“隐式”流量自适应策略,例如使用学习算法,这将进一步减少协议开销。;我们通过针对不同应用的广泛仿真评估DYNAMMA的性能场景。我们的仿真研究结果表明,与TRAMA和802.11相比,DYNAMMA的排队延迟明显小于TRAMA,并且具有较高的信道利用率和节能效果。我们还提供了一个通用的MAC开发测试平台,用于使用UWB物理层评估计划访问的MAC协议,并使用基于FPGA的测试平台来评估DYNAMMA的性能。在未来的工作中,DYNAMMA框架可用于整合流量预测以建立流量信息。这可以潜在地减少由于调度而引入的排队延迟。工作的另一个方向是改进DYNAMMA框架中提出的传输调度算法,以提供有保证的传递延迟。

著录项

  • 作者

    Rajendran, Venkatesh.;

  • 作者单位

    University of California, Santa Cruz.;

  • 授予单位 University of California, Santa Cruz.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号