首页> 外文学位 >Numerical investigation on the heat transfer enhancement using micro/nano phase-change particulate flow.
【24h】

Numerical investigation on the heat transfer enhancement using micro/nano phase-change particulate flow.

机译:利用微/纳米相变颗粒流增强传热的数值研究。

获取原文
获取原文并翻译 | 示例

摘要

The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because of the unique features of these two kinds of fluids. To better assist the design of a high performance micro-channel heat sink using phase change fluid and nanofluid, the heat transfer enhancement mechanism behind the flow with such fluids must be completely understood.; A detailed parametric study is conducted to further investigate the heat transfer enhancement of the phase change material particle suspension flow, by using the two-phase non-thermal-equilibrium model developed by Hao and Tao (2004). The parametric study is conducted under normal conditions with Reynolds numbers of Re = 90--600 and phase change material particle concentrations of epsilonp ≤ 0.25, as well as extreme conditions of very low Reynolds numbers (Re 50) and high phase change material particle concentration (epsilonp = 50%--70%) slurry flow. By using the two newly-defined parameters, named effectiveness factor epsiloneff and performance index PI, respectively, it is found that there exists an optimal relation between the channel design parameters L and D, particle volume fraction epsilonp, Reynolds number Re, and the wall heat flux qw. The influence of the particle volume fraction epsilonp, particle size dp, and the particle viscosity mu p, to the phase change material suspension flow, are investigated and discussed. The model was validated by available experimental data. The conclusions will assist designers in making their decisions that relate to the design or selection of a micro-pump suitable for micro or mini scale heat transfer devices.; To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and its many numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed, through incorporating the different forces acting on the nanoparticles to the two-component lattice Boltzmann model. It is found that the nanofluid has better heat transfer enhancement at low Reynolds numbers, and the Brownian motion effect of the nanoparticles will be weakened by the increase of flow speed.
机译:由于这两种流体的独特功能,在微通道散热器设计中引入相变材料流体和纳米流体可以显着提高散热器的冷却能力。为了更好地协助使用相变流体和纳米流体的高性能微通道散热器的设计,必须充分了解这种流体流动背后的传热增强机理。通过使用Hao和Tao(2004)开发的两相非热平衡模型,进行了详细的参数研究,以进一步研究相变材料颗粒悬浮液流动的传热增强。参数研究在正常条件下进行,雷诺数Re = 90--600,相变材料粒子浓度epsilonp≤0.25,以及极低雷诺数(Re <50)和高相变材料粒子的极端条件浓度(ε= 50%-70%)的浆液流量。通过分别使用两个新定义的参数,分别称为有效性因子epsiloneff和性能指数PI,发现通道设计参数L和D,颗粒体积分数epsilonp,雷诺数Re和壁之间存在最佳关系。热通量qw。研究并讨论了颗粒体积分数ε,颗粒尺寸dp和颗粒粘度μp对相变材料悬浮液流动的影响。该模型已通过可用的实验数据验证。结论将有助于设计人员做出与设计或选择适用于微型或小型传热装置的微型泵有关的决定。为了从粒子水平理解纳米流体流的传热增强机理,使用格子Boltzmann方法是因为它具有介观特性和许多数值优势。通过使用两组分晶格玻尔兹曼模型,通过将作用在纳米颗粒上的不同力合并到两组分晶格玻尔兹曼模型中,分析了纳米流体的传热增强。发现纳米流体在低雷诺数下具有更好的传热增强,并且纳米粒子的布朗运动效应将随着流速的增加而减弱。

著录项

  • 作者

    Xing, Keqiang.;

  • 作者单位

    Florida International University.;

  • 授予单位 Florida International University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:39:51

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号