首页> 外文学位 >Numerical investigation on the interaction between particles and eddies in gas-particle flows behind a backward-facing step.
【24h】

Numerical investigation on the interaction between particles and eddies in gas-particle flows behind a backward-facing step.

机译:气体颗粒中颗粒与涡流之间相互作用的数值研究是在向后的步骤之后进行的。

获取原文
获取原文并翻译 | 示例

摘要

2D and 3D numerical investigation of a low speed particle-laden turbulent flow with different Reynolds numbers of 18,400 and 1,290 over a backward-facing step has been carried out. The gas phase is performed by Large Eddy Simulation and the particle phase is solved by a Lagrangian particle tracking model. Both the 2D and 3D simulations predict mean properties for both phases, are in good agreement with experimental results. However, there is large discrepancy for the fluctuating properties between 2D results and experimental results, while 3D results are in good agreement with experimental results. Further comparison indicates that although both 2D and 3D simulations can reveal the evolutions of the turbulent flow of the gas phase, the 3D simulation predicts much frequent activity of vortex evolutions such as rolling up, growing, merging and breaking up.; Simulation also compares the instantaneous concentration of particles with different Stokes numbers, initial velocity slip and the effect of gravitational force. Both 2D and 3D simulations give similar results on particle dispersions. Smallest particles are strongly controlled by the vortex structure of the gas phase and follow closely the gas vortices. Particles with time scales of similar order as the gas time scale are centrifuged out by a vortex and are preferentially concentrated along the edge of the gas vortices. Large particles essentially do not respond to the vortex motion within the gas time scale available and are also not preferentially concentrated.; The success of 3D simulation in predicting a two-phase turbulent flow provides a numerical basis for revisiting the gas-particle covariance model. Several gas-particle covariance models used in second-order closure models are evaluated in the present study. The predicted results by the models are in agreement with the numerical simulation results. However, a proper empirical constant is needed for different cases and there is no formula to determine the constant. A modified model is proposed in this study so that an empirical constant is no longer necessary. The predicted results using our model are as good as those from other models. Therefore, a better closure model is introduced for the gas-particle covariance model.
机译:已经进行了2D和3D数值研究,该数值研究了在朝后的步骤中,雷诺数分别为18,400和1,290的低速含颗​​粒湍流。气相通过大涡模拟进行,而粒子相通过拉格朗日粒子跟踪模型求解。 2D和3D模拟都预测了两个阶段的平均性能,与实验结果非常吻合。但是,2D结果与实验结果之间的波动性差异很大,而3D结果与实验结果吻合良好。进一步的比较表明,尽管2D和3D模拟都可以揭示气相湍流的演化,但3D模拟预测涡旋演化的频繁活动,例如卷起,生长,合并和分解。仿真还比较了具有不同斯托克斯数,初始速度滑移和重力作用的颗粒的瞬时浓度。 2D和3D模拟在颗粒分散方面都给出了相似的结果。最小的颗粒受到气相旋涡结构的强烈控制,并紧跟着气体旋涡。具有与气体时间标度相似的时间标度的时间标度的粒子被涡旋离心分离,并优先沿着气体旋涡的边缘集中。大颗粒在可用的气体时间范围内基本上不响应涡旋运动,并且也不优先集中。 3D模拟在预测两相湍流中的成功为重新研究气-粒子协方差模型提供了数值基础。在本研究中评估了二阶封闭模型中使用的几种气体颗粒协方差模型。模型的预测结果与数值模拟结果吻合。但是,在不同情况下需要适当的经验常数,并且没有公式可以确定该常数。在这项研究中提出了一种改进的模型,因此不再需要经验常数。使用我们的模型的预测结果与其他模型的预测结果一样好。因此,为气体颗粒协方差模型引入了更好的封闭模型。

著录项

  • 作者

    Yu, Kin Fung.;

  • 作者单位

    Hong Kong Polytechnic University (Hong Kong).;

  • 授予单位 Hong Kong Polytechnic University (Hong Kong).;
  • 学科 Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号