首页> 外文学位 >Mechanisms of reactivity and lattice reconstructions in ternary copper (I) halides.
【24h】

Mechanisms of reactivity and lattice reconstructions in ternary copper (I) halides.

机译:三元铜(I)卤化物的反应性和晶格重构机理。

获取原文
获取原文并翻译 | 示例

摘要

The work in this dissertation consists of a two-part study in which families of ternary copper (I) halides are use to explore mechanisms of phase transitions and reactions in solids. Lewis acid modified copper (I) chloride networks of the formula CuMCl4 (M = Al, Ga) bind up to 2 molar equivalents of either ethylene or CO at low gas pressures. These reactions proceed at room temperature to give crystalline adduct phases through a dramatic expansion and restructuring of the CuMCl4 lattice. The CO adducts of CuMCl 4 are characterized by in situ powder X-ray diffraction, UV-vis diffuse reflectance spectroscopy, and FTIR spectroscopy. The structure of the beta-(CO)CuAlCl4 adduct is determined by single crystal X-ray diffraction. A sorptive reconstruction mechanism is proposed for the formation of beta-(CO)CuAlCl4 in which Sn2 attack on copper is directed along van der Waals channels in the alpha-CuAlCl 4 lattice. To demonstrate the effect of Lewis acids on the bonding between Cu(I) and pi-coordinating ligands, the reactivity of the series of solids CuCl, CuGaCl4 and CuAlCl4 with both ethylene and CO gas is considered. The bonding of copper (I) to CO in the Lewis acid-modified frameworks is shown to be non-classical, consisting predominantly of sigma-bonding. The enhancement to the sigma-bonding component of the Cu-L bond provided by the Lewis acid results in competitive bonding of CO and ethylene. The reactions of CuAlCl4 are studied at 35°C by TGA/DSC and optical microscopy provide kinetic data for use in evaluating the proposed sorptive reconstruction mechanism of gas sorption and lattice rearrangement. The reactions to give (C2H4)CuAlCl4 and (C2H4) 2CuAlCl4 are shown to follow 1-D phase boundary controlled growth kinetics. A dual reaction mechanism is proposed for the low pressure formation of (C2H4)CuAlCl4, which is shown to be a liquid at 35°C. A linear rate dependence on the ethylene partial pressure for the crystallization of (C2H4)2CuAlCl 4 is consistent with an associative reaction mechanism. In the second study the phase transition of melting in copper halides is probed by the examination of the molten structure of ternary compounds of composition ACu2Cl 3 (A = monovalent templating cation) are studied by synchrotron X-ray and neutron diffraction. The structure of these compounds consist of covalently bonded [Cu2Cl3]- chains which run parallel to one another. Neutron diffraction and PDF analysis shows that these chains persist into the molten state and can serve as a structural unit for designing order into the molten state. This order can be further manipulated by choice of the templating cation. This work is relevant to understanding and designing structure in the molten state.
机译:本论文的工作分为两部分,其中三元卤化铜家族用于探索固体中的相变和反应机理。路易斯酸改性的分子式为CuMCl4的氯化铜(I)氯化物网络(M = Al,Ga)在低气压下最多可结合2摩尔当量的乙烯或CO。这些反应在室温下进行,通过CuMCl4晶格的急剧膨胀和重构得到结晶加合物相。 CuMCl 4的CO加合物的特征在于原位粉末X射线衍射,紫外可见漫反射光谱和FTIR光谱。 β-(CO)CuAlCl4加合物的结构通过单晶X射线衍射确定。为形成β-(CO)CuAlCl4,提出了一种吸附重建机制,其中Sn2对铜的攻击沿α-CuAlCl4晶格中的范德华通道定向。为了证明路易斯酸对Cu(I)与π配位配体之间键合的影响,考虑了一系列固体CuCl,CuGaCl4和CuAlCl4与乙烯和一氧化碳气体的反应性。在路易斯酸改性的骨架中,铜(I)与CO的键合显示为非经典键,主要由sigma键组成。路易斯酸对Cu-L键的sigma键成分的增强导致CO和乙烯的竞争键结合。通过TGA / DSC在35°C下研究了CuAlCl4的反应,光学显微镜提供了动力学数据,可用于评估拟议的气体吸附和晶格重排的吸附重建机理。得到(C2H4)CuAlCl4和(C2H4)2CuAlCl4的反应显示遵循一维相边界控制的生长动力学。提出了一种双重反应机理,用于低压形成(C2H4)CuAlCl4,该反应在35°C时为液体。 (C 2 H 4)2 CuAlCl 4结晶的线性速率对乙烯分压的依赖性与缔合反应机理一致。在第二项研究中,通过同步加速器X射线和中子衍射研究了组成为ACu2Cl 3(A =单价模板阳离子)的三元化合物的熔融结构,从而研究了卤化铜的熔融相变。这些化合物的结构由相互平行延伸的共价键[Cu2Cl3]-链组成。中子衍射和PDF分析表明,这些链持久地保持在熔融态,并且可以用作用于设计熔融态顺序的结构单元。可以通过选择模板阳离子来进一步操纵该顺序。这项工作与理解和设计熔融状态的结构有关。

著录项

  • 作者

    Capracotta, Michael David.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号