首页> 外文学位 >Investigation of the suitability of wide bandgap dilute magnetic semiconductors for spintronics.
【24h】

Investigation of the suitability of wide bandgap dilute magnetic semiconductors for spintronics.

机译:宽带隙稀磁半导体对自旋电子学的适用性研究。

获取原文
获取原文并翻译 | 示例

摘要

New semiconductor materials may enable next-generation 'spintronic' devices which exploit both the spin and charge of an electron for data processing, storage, and transfer. The realization of such devices would benefit greatly from room temperature ferromagnetic dilute magnetic semiconductors. Theoretical predictions have suggested that room temperature ferromagnetism may be possible in the wide bandgap semiconductors Ga1--xMnxN and Zn1--xMnxO, though the existing models require input from the growth of high-quality materials. This work focuses on an experimental effort to develop high-quality materials in both of these wide bandgap materials systems.;Zn1--xMnxO and Zn1--xCo xO single crystals have been grown by a modified melt growth technique. X-ray diffraction was used to examine the structural quality and demonstrate the single crystal character of these devices. Substitutional transition metal incorporation has been verified by optical transmission and electron paramagnetic resonance measurements. No indications of ferromagnetic hysteresis are observed from the bulk single crystal samples, and temperature dependent magnetization studies demonstrate a dominant antiferromagnetic exchange interaction. Efforts to introduce ferromagnetic ordering were only successful through processing techniques which significantly degraded the material quality, suggesting a defect-related origin to the observed ferromagnetism.;Ga1--xMnxN thin films were grown by metalorganic chemical vapor deposition on two inch sapphire substrates. Good crystalline quality and a consistent growth mode with Mn incorporation were verified by several independent characterization techniques. Substitutional incorporation of Mn on the Ga lattice site was confirmed by electron paramagnetic resonance. Mn acted as a deep acceptor in GaN, suggesting that hole mediated ferromagnetism in this material is not possible. Nevertheless, ferromagnetic hysteresis was observed in the Ga1--xMnxN films. The apparent strength of the magnetization correlated with the relative ratio of Mn 3+ to Mn2+. Valence state control through codoping with additional donors such as silicon was observed. Additional studies on Ga1--xFexN also showed a magnetic hysteresis. A comparison with implanted samples showed that the common origin to the apparent strong ferromagnetic hysteresis is really a by-product of a change within the paramagnetic ordering from isolated Mn2+/3+ substitutional ions. The observed magnetic hysteresis is due to the formation of Mn-rich regions during the growth process, which can be controlled through the use of antisurfactants during growth. Qualitative modeling of the magnetic signature using a combination of Mn-configurations replicated the observed magnetic behavior. Through careful and detailed studies of high-quality materials in the wide bandgap system, it was shown that the original intrinsic models for room temperature ferromagnetism in the wide bandgap semiconductors do not hold and the room temperature ferromagnetism in these materials results from extrinsic contributions.
机译:新的半导体材料可能使下一代“自旋电子”设备成为可能,这些设备利用电子的自旋和电荷进行数据处理,存储和传输。这种设备的实现将受益于室温铁磁稀磁半导体。理论上的预测表明,在宽带隙半导体Ga1-xMnxN和Zn1-xMnxO中,室温铁磁可能是可行的,尽管现有模型需要高质量材料的生长作为输入。这项工作的重点是在这两种宽带隙材料系统中开发高质量材料的实验工作。Zn1-xMnxO和Zn1-xCo xO单晶已通过改良的熔体生长技术生长。 X射线衍射用于检查结构质量并证明这些设备的单晶特性。取代过渡金属的掺入已通过光透射和电子顺磁共振测量得到证实。从大块单晶样品中未观察到铁磁滞后的迹象,并且温度依赖性磁化研究表明主要的反铁磁交换相互作用。引入铁磁有序性的努力只有通过能显着降低材料质量的加工技术才能成功完成,这表明观察到的铁磁与缺陷有关。通过几种独立的表征技术验证了良好的晶体质量和与Mn结合的稳定生长模式。通过电子顺磁共振证实了Mn在Ga晶格位点上的取代结合。 Mn充当GaN中的深受主,表明在这种材料中空穴介导的铁磁性是不可能的。尽管如此,在Ga1-xMnxN薄膜中仍观察到铁磁磁滞现象。磁化强度的表观强度与Mn 3+与Mn2 +的相对比例相关。观察到通过与其他供体例如硅共掺杂来控制价态。对Ga1-xFexN的其他研究也显示出磁滞现象。与植入样品的比较表明,明显的强铁磁滞后现象的共同起因实际上是分离的Mn2 + / 3 +替代离子在顺磁顺序内变化的副产品。观察到的磁滞是由于在生长过程中形成了富锰区域,可以通过在生长过程中使用抗表面活性剂来控制其磁滞。使用Mn-构型的组合对磁信号进行定性建模,可以复制观察到的磁行为。通过对宽带隙系统中高质量材料的仔细和详细研究,表明宽带隙半导体中室温铁磁的原始固有模型不成立,并且这些材料中的室温铁磁是由外部贡献所致。

著录项

  • 作者

    Kane, Matthew Hartmann.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 269 p.
  • 总页数 269
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号