首页> 外文学位 >Nonblocking WDM switching networks: Complexity and constructions.
【24h】

Nonblocking WDM switching networks: Complexity and constructions.

机译:无阻塞WDM交换网络:复杂性和结构。

获取原文
获取原文并翻译 | 示例

摘要

With the advances of dense wavelength division multiplexing (DWDM) technology, the number of wavelengths in a wavelength division multiplexed (WDM) network increases to hundreds or more per fiber, and each wavelength operates at 10Gbps or higher. While raw bandwidth has increased by more than four orders of magnitude over the last decade or so, capacity of switches has only been up by a factor of ten. Switching speed is the bottleneck at the core of the optical network infrastructure. Consequently, a challenge is to design cost-effective WDM switches that can scale in size beyond a hundred of inputs and outputs, and at the same time, switch fast.; Typically, there are two request models widely considered. In one model, a connection request asks to go from a wavelength on an input fiber of the WDM switch to a particular wavelength on an output fiber. In the other, a connection only needs to get to a particular output fiber, irrespective of what wavelength it will be on.; Complexity. Since it's difficult to compare the cost between different constructions, we need to somehow quantify the networks. There are several ways to do that. First one will be counting the number of components in the networks, especially the wavelength converters. As wavelength conversion is unavoidable when the source and destination involve different wavelengths, also full wavelength converters are still not practical, limited wavelength converters (LWC) are preferred when performing wavelength conversion. Hence our objective is to minimize the total number of LWCs without affecting the nonblockingness of the networks. Secondly we model the network as a graph and study the complexity of these graphs, which is defined as the number of edges in the graph. This gives a good estimate of the cost of the networks. Here we extend some known results from traditional circuit switching networks to the WDM networks.; Construction. We will give both theoretical and practical constructions. Theoretical constructions will realize some upper bounds on the result from our analysis of the complexity and many time can lead to good practical constructions. We will also give novel constructions of strictly nonblocking and rearrangeably nonblocking WDM switches for both request models in unicast using limited range wavelength converters and Arrayed Waveguide Grating Routers. We will also give several cost-effective constructions for multicast under both request models. Our designs are all relatively simple and easy to be laid out, consume little power, do no accumulate much noise, and are useful for both optical circuit-switching and optical packet/burst switching.
机译:随着密集波分复用(DWDM)技术的进步,每根光纤的波分复用(WDM)网络中的波长数量增加到数百个或更多,并且每个波长的工作速率都为10Gbps或更高。在过去十年左右的时间里,原始带宽增加了四个数量级以上,而交换机的容量仅增加了十倍。交换速度是光网络基础架构的核心瓶颈。因此,一个挑战是设计经济高效的WDM交换机,该交换机的规模可以扩展到超过一百个输入和输出,同时又要快速切换。通常,有两种被广泛考虑的请求模型。在一个模型中,连接请求要求从WDM交换机的输入光纤上的波长转到输出光纤上的特定波长。另一方面,连接只需要到达特定的输出光纤,而不管连接在什么波长上。复杂。由于很难比较不同构造之间的成本,因此我们需要以某种方式量化网络。有几种方法可以做到这一点。首先要计算网络中组件的数量,尤其是波长转换器。由于当源和目的地涉及不同的波长时不可避免地要进行波长转换,因此全波长转换器仍然不实用,因此在执行波长转换时最好使用受限波长转换器(LWC)。因此,我们的目标是在不影响网络无阻塞性的前提下,尽量减少LWC的总数。其次,我们将网络建模为一个图,并研究这些图的复杂性,定义为图中的边数。这样可以很好地估算网络成本。在这里,我们将一些已知的结果从传统的电路交换网络扩展到WDM网络。施工。我们将给出理论上和实践上的解释。理论构造将通过我们对复杂性的分析实现结果的某些上限,并且许多时间可以导致良好的实用构造。我们还将为使用有限范围波长转换器和阵列波导光栅路由器的单播两种请求模型提供严格无阻塞和可重排无阻塞WDM交换机的新颖构造。我们还将在两种请求模型下为组播提供几种经济高效的构造。我们的设计都相对简单且易于布局,功耗很小,不会积聚太多的噪声,并且对于光电路交换和光分组/突发交换都是有用的。

著录项

  • 作者

    Pan, Dazhen.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号