首页> 外文学位 >Gas-kinetic moving mesh methods for viscous flow simulations.
【24h】

Gas-kinetic moving mesh methods for viscous flow simulations.

机译:粘性流动模拟的气体动力学移动网格方法。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, the gas-kinetic BGK scheme for two-dimensional viscous flow computation is extended to the moving meshes. Specifically, both the static adaptive grid method and dynamic unified moving mesh method have been developed. In the former one, the grid movement and adaptation are controlled by a monitor function which depends on the gradient of flow variables, such as density or velocity. The grid points in the adaptive grid method can be easily moved and concentrated to the regions with large density and velocity gradients, such as multi-material interface and the boundary layer. Therefore, the adaptive grid method is more accurate and efficient than the methods with stationary mesh points. In the dynamic moving mesh method, the gas-kinetic BGK equation is first reformulated under a unified coordinate transformation with grid velocity included. Then, a unified conservative gas-kinetic scheme is constructed for the viscous flow computation on moving meshes. Due to the coupling between the grid velocity and the overall solution algorithm, the Eulerian and Lagrangian methods become two limiting cases in the current gas-kinetic method. The moving grid method extends the applicable regime of the gas-kinetic scheme to the flows with free surface and moving boundaries, such as dam break problem and airfoil oscillations. In order to further increase the robustness of the moving grid scheme, the above two methods, i.e., static and dynamic ones, have been uniquely combined to move, redistribute, and remedy the distorted meshes in the fluid computations. Many numerical examples from incompressible low speed flow to the supersonic shock interaction are presented. The accuracy and robustness of the moving mesh have been fully demonstrated. In the unsteady aerodynamic flow application, the falling plate problems with the rich dynamic behavior, such as tumbling and fluttering, have been studied. Excellent agreement between the experimental measurements and the numerical computations has been obtained.
机译:本文将用于二维粘性流计算的气体动力学BGK方案扩展到运动网格。具体地,已经开发了静态自适应网格方法和动态统一移动网格方法。在前一种方法中,网格的移动和适应由监视功能控制,该功能取决于流量变量(例如密度或速度)的梯度。自适应网格方法中的网格点可以轻松移动并集中到密度和速度梯度较大的区域,例如多材质界面和边界层。因此,自适应网格方法比具有固定网格点的方法更准确,更有效。在动态移动网格方法中,首先在统一的坐标变换下(包括网格速度)重新构造了气体动力学BGK方程。然后,建立了统一的保守气体动力学方案,用于在运动网格上进行粘性流计算。由于网格速度和整体求解算法之间的耦合,欧拉和拉格朗日方法成为当前气体动力学方法的两个局限性情况。运动网格法将气体动力学方案的适用范围扩展到具有自由表面和运动边界的流动,例如溃坝问题和机翼振动。为了进一步提高移动网格方案的鲁棒性,上述两种方法,即静态方法和动态方法,已被独特地组合以在流体计算中移动,重新分布和校正变形的网格。给出了从不可压缩的低速流动到超音速冲击相互作用的许多数值示例。运动网格的准确性和鲁棒性已得到充分证明。在非定常的空气流动应用中,已经研究了具有丰富动态行为的坠落板问题,例如翻滚和颤动。实验测量和数值计算之间已获得极好的一致性。

著录项

  • 作者

    Jin, Changqiu.;

  • 作者单位

    Hong Kong University of Science and Technology (People's Republic of China).;

  • 授予单位 Hong Kong University of Science and Technology (People's Republic of China).;
  • 学科 Mathematics.; Engineering Aerospace.; Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;航空、航天技术的研究与探索;等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号