首页> 外文学位 >Spatially resolved photoluminescence spectroscopy of quantum dots.
【24h】

Spatially resolved photoluminescence spectroscopy of quantum dots.

机译:量子点的空间分辨光致发光光谱。

获取原文
获取原文并翻译 | 示例

摘要

Recent advancements in nanotechnology create a need for a better understanding of the underlying physical processes that lead to the different behavior of nanoscale structures in comparison to bulk materials. The influence of the surrounding environment on the physical and optical properties of nanoscale objects embedded inside them is of particular interest. This research is focused on the optical properties of semiconductor quantum dots which are zero-dimensional nanostructures. There are many investigation techniques for measuring the local parameters and structural characteristics of Quantum Dot structures. They include X-ray diffraction, Transmission Electron Microscopy, Wavelength Dispersive Spectroscopy, etc. However, none of these is suitable for the study of large areas of quantum dots matrices and substrates.; The existence of spatial inhomogeneity in the quantum dots allows for a deeper and better understanding of underlying physical processes responsible in particular for the observed changes in photoluminescence (PL) characteristics. Spectroscopic PL mapping can reveal areas of improved laser performance of InAs - InGaAs quantum dots structures. Establishing physical mechanisms responsible for two different types of spatial PL inhomogeneity in InAs/InGaAs quantum dots structures for laser applications was the first objective of this research.; Most of the bio-applications of semiconductor quantum dots utilize their superior optical properties over organic fluorophores. Therefore, optimization of QD labeling performance with biomolecule attachment was another focus of this research. Semiconductor quantum dots suspended in liquids were investigated, especially the influence of surrounding molecules that may be attached or bio-conjugated to the quantum dots for specific use in biological reactions on the photoluminescence spectrum. Provision of underlying physical mechanisms of optical property instability of CdSe/ZnS quantum dots used for biological applications was in the scope of this research. Bio-conjugation and functionalization are the fundamental issues for bio-marker tagging application of semiconductor quantum dots. It was discovered that spatially resolved photoluminescence spectroscopy and PL photo-degradation kinetics can confirm the bio-conjugation. Development of a methodology that will allow the spectroscopic confirmation of bio-conjugation of quantum dot fluorescent tags and optimization of their performance was the final goal for this research project.
机译:纳米技术的最新进展导致需要更好地了解潜在的物理过程,与散装材料相比,这些物理过程导致了纳米结构的不同行为。周围环境对嵌入其中的纳米级物体的物理和光学特性的影响尤其令人关注。这项研究集中于零维纳米结构的半导体量子点的光学特性。有许多用于测量量子点结构的局部参数和结构特征的研究技术。它们包括X射线衍射,透射电子显微镜,波长色散光谱等。但是,这些都不适合用于大面积量子点矩阵和衬底的研究。量子点中空间不均匀性的存在使人们可以更深入,更好地理解特别是负责观察到的光致发光(PL)特性变化的潜在物理过程。光谱PL映射可以揭示InAs-InGaAs量子点结构的改善的激光性能的区域。建立负责激光应用的InAs / InGaAs量子点结构中两种不同类型的空间PL不均匀性的物理机制是本研究的首要目标。半导体量子点的大多数生物应用都利用了其优于有机荧光团的光学特性。因此,通过生物分子附着优化QD标记性能是本研究的另一个重点。研究了悬浮在液体中的半导体量子点,尤其是周围分子的影响,这些分子可能附着或生物共轭到量子点上,专门用于光致发光光谱上的生物反应。提供用于生物学应用的CdSe / ZnS量子点的光学性质不稳定性的潜在物理机制在本研究范围内。生物缀合和功能化是半导体量子点生物标记标签应用的基本问题。发现空间分辨光致发光光谱和PL光降解动力学可以证实生物缀合。开发一种方法,该方法将允许光谱确认量子点荧光标签的生物共轭并优化其性能,这是该研究项目的最终目标。

著录项

  • 作者

    Dybiec, Maciej.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Engineering Electronics and Electrical.; Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;电磁学、电动力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号