首页> 外文学位 >Computational modeling of high-performance nickel-metal hydride battery materials.
【24h】

Computational modeling of high-performance nickel-metal hydride battery materials.

机译:高性能镍氢电池材料的计算模型。

获取原文
获取原文并翻译 | 示例

摘要

With 10 million hybrid electric vehicles on the road worldwide powered primarily by nickel-metal hydride (NiMH) batteries, research into this battery chemistry will improve the hybrid vehicle driving experience, extending electric-only driving ranges while reducing emissions and using less gasoline. The transfer, storage and transport of protons and electrons depend strongly on the structural and electrical features of the active material, including multiple phases, defects, and structural and compositional disorder. The contributions of such subtle defects and the difference with the bulk structure can be difficult to discern experimentally.;Ab initio calculations such as the ones based on density functional theory have been used to calculate properties and confirm ground state phase stability in AB2 Laves phase alloys. First-principle DFT calculations confirmed a semi-empirical model for C14/C15 Laves phase structure determination for simple binary compounds, and extended the model for more ternary compounds, using the Mg(Cu1-xZnx)2 system, improving the resolution of the model.;Cycle stability of NiMH anode materials is strongly correlated to pressure-concentration-temperature isotherm hysteresis measurements, a measure of irreversible losses such as plastic deformation upon hydrogenation and dehydrogenation, and alloy pulverization plays a key pathway for the degradation. First-principle DFT calculations modeled the initial hydrogenation of AB5-type and AB2-type alloys, yielding the initial lattice expansions upon hydrogenation, and correlating to the hysteresis trends, which can help guide the design of long-cycling materials.;X-ray diffraction patterns offer subtle but valuable markers that can be correlated to structure and electrochemical performance. Stacking faults direct interrupt (h0l) plane periodicity of nickel hydroxide materials, and through Rietveld refinement and DIFFaX modeling of the different types of stacking faults, the evolution of the stacking faults was tracked over precipitation time for different compositions. We determined which types of stacking faults have a stronger effect on the (101) peak, and the conditions that promote the formation of each type of stacking fault.;Electrochemical impedance spectroscopy coupled with equivalent circuit modeling probes the interactions that occur at the surface interfaces, yielding valuable electrical properties and electrochemical kinetics information. Low-temperature performance of NiMH batteries can be improved by dopants to AB2 anode materials, and La and Nd are particularly promising additives that improve both the storage capacity and high-rate dischargeability. We determined the catalytic activity and the surface area contributions to the electrochemical reactions.;This study of defects, structural properties, and surface interfaces in battery materials can identify trends that contribute to higher capacity and higher power materials using computational and modeling methods. Understanding the trends provides better insight into how structural properties affect electrochemical processes and will help guide the design for better optimized battery materials.
机译:全球范围内有1000万辆混合动力汽车主要由镍氢(NiMH)电池供电,对此电池化学物质的研究将改善混合动力汽车的驾驶体验,扩大纯电动驾驶里程,同时减少排放并减少汽油消耗。质子和电子的转移,存储和运输在很大程度上取决于活性材料的结构和电学特征,包括多相,缺陷以及结构和组成无序。这种细微的缺陷的贡献以及与整体结构的差异可能很难通过实验来辨别。;从头算的计算,例如基于密度泛函理论的计算,已经用于计算性能并确认AB2 Laves相合金的基态相稳定性。 。第一性原理DFT计算证实了使用简单的二元化合物确定C14 / C15 Laves相结构的半经验模型,并使用Mg(Cu1-xZnx)2系统将其扩展为更多的三元化合物,从而提高了模型的分辨率。 NiMH负极材料的循环稳定性与压力-浓度-温度等温线滞后测量,不可逆损失(如氢化和脱氢时的塑性变形)的测量密切相关,合金粉化是降解的关键途径。第一性原理DFT计算模拟了AB5型和AB2型合金的初始氢化,在氢化时产生初始晶格膨胀,并与磁滞趋势相关,这可以帮助指导长循环材料的设计。衍射图谱提供了微妙但有价值的标记,这些标记可与结构和电化学性能相关。堆垛层错直接破坏了氢氧化镍材料的平面(h0l)平面周期性,并且通过Rietveld精炼和不同类型堆垛层错的DIFFaX建模,在不同成分的沉积时间内跟踪了堆垛层错的演化。我们确定了哪种堆垛层错对(101)峰具有更强的影响,以及促进每种类型的堆垛层错形成的条件。;电化学阻抗谱与等效电路建模相结合,探测了在表面界面处发生的相互作用,产生有价值的电性能和电化学动力学信息。 NiMH电池的低温性能可以通过向AB2负极材料中添加掺杂剂来改善,而La和Nd是特别有前途的添加剂,可以同时提高存储容量和高倍率放电性能。我们确定了催化活性和表面积对电化学反应的贡献。该研究对电池材料中的缺陷,结构特性和表面界面的研究可以使用计算和建模方法确定有助于更高容量和更高功率材料的趋势。了解趋势可以更好地了解结构特性如何影响电化学过程,并有助于指导设计以更好地优化电池材料。

著录项

  • 作者

    Wong, Diana F.;

  • 作者单位

    Wayne State University.;

  • 授予单位 Wayne State University.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:39:44

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号