首页> 外文学位 >Computational modeling of progressive collapse in reinforced concrete frame structures.
【24h】

Computational modeling of progressive collapse in reinforced concrete frame structures.

机译:钢筋混凝土框架结构渐进倒塌的计算模型。

获取原文
获取原文并翻译 | 示例

摘要

Progressive collapse of structures during severe loading caused by earthquakes, blasts, and other effects causes catastrophic loss of life. Such collapse is typically caused by the inability of the structural system to redistribute its loads following the failure of one or more structural members to carry their gravity loads. In reinforced concrete (RC) structures, the loss of gravity load-carrying capacity in columns has been observed to trigger a chain of collapse events. This is especially true for structures built according to older building code provisions and thus possessing non-ductile reinforcement details. The evaluation of the vulnerability of these buildings to collapse in the event of an earthquake, and its expected improvement as a result of applying proposed seismic retrofit measures, e.g., using fiber-reinforced polymer (FRP) composites; is an important prerequisite in policy decisions and emergency preparedness. The objective of this dissertation is to develop simulation tools for progressive collapse assessment.; The methodology of the research presented in this dissertation is divided into the development of simulation tools on the component and system levels. Component-level developments refer to modeling the behavior of seismically-deficient RC columns, and establishing criteria for their collapse and removal from the computational finite element (FE) model of the structural system. System-level developments refer to modeling the mechanics of removing a structural element from the FE model during the simulation.; Computational component models are developed and experimentally-calibrated for the distribution of confining stresses in fiber-discretized cross-sections of RC columns and for the confinement-sensitive constitutive material behavior of three common seismically-deficient details: (i) inadequately-confined core concrete; (ii) buckling-prone longitudinal reinforcement; and (iii) insufficiently-developed lap-splices. Thus, a pseudo-solid modeling approach is pursued at the higher computational efficiency of uniaxial material models. Cross-section damage indices are formulated by aggregating the effects of hysteretic damage from the constituent fibers according to their respective constitutive models; and used to identify the collapse limit-state and to establish removal criteria for the class of RC columns dominated by axial-flexure interaction. An existing analytical model from the literature is used to identify the collapse limit-state and to establish removal criteria for the class of RC columns dominated by shear-axial interaction. The developed computational models are implemented in an extensible form using an object-oriented software framework. The computational models are used to simulate a number of previous experimental studies on as-built and FRP-retrofitted RC columns with seismically-deficient details. The results of the simulation exhibit the ability to predict not only the as-built response but also the effects and utility limit of the FRP retrofit.; An analytical formulation is developed for the time-dependent problem of sudden removal of a structural element from a FE model using the principles of dynamic force equilibrium. An automatic element removal algorithm is analytically formulated, computationally implemented, and numerically tested for robustness using an idealized benchmark problem. This formulation is extended to include a simplified account of collision between the collapsed columns and the rest of the structure.; The dissertation concludes by presenting demonstration applications of the developed progressive collapse simulation tools using two test-bed structural systems representing older one- and five-story RC-frame buildings partially infilled with unreinforced masonry (URM) walls. The applications include: (i) the deterministic assessment of progressive collapse response (i.e., the interaction between the URM wall and the RC frames, element collapse mode and sequence,
机译:在地震,爆炸和其他影响引起的严重荷载下,结构逐渐倒塌会导致灾难性的生命损失。这种塌陷通常是由于一个或多个结构构件无法承受其重力载荷而导致结构系统无法重新分配其载荷而引起的。在钢筋混凝土(RC)结构中,观察到圆柱中重力承载能力的损失会引发一系列坍塌事件。对于根据较早的建筑规范规定建造并因此具有非延性钢筋细节的结构尤其如此。评估这些建筑物在发生地震时倒塌的脆弱性,以及由于采用拟议的地震改造措施(例如使用纤维增强聚合物(FRP)复合材料)而带来的预期改善;是决策和应急准备的重要前提。本文的目的是开发用于逐步倒塌评估的仿真工具。本文提出的研究方法论分为组件和系统级仿真工具的开发。组件级开发指的是对地震缺乏的RC柱的行为进行建模,并为它们的坍塌和从结构系统的计算有限元(FE)模型中移除建立标准。系统级开发是指对在仿真过程中从FE模型中删除结构元素的力学进行建模。开发了计算组件模型并进行了实验校准,以用于RC柱的纤维离散截面中的约束应力分布,以及三个常见的地震缺陷细节对约束敏感的本构材料行为的影响:(i)约束不足的核心混凝土; (ii)易屈曲的纵向钢筋; (iii)搭接不充分。因此,以更高的单轴材料模型计算效率来追求伪固体建模方法。横截面损伤指数是通过根据组成纤维各自的本构模型,汇总组成纤维的滞后损伤的影响来制定的;并用于确定塌陷极限状态,并为以轴向-挠度相互作用为主的RC柱建立移除准则。来自文献的现有分析模型用于识别塌陷极限状态,并建立以剪力-轴向相互作用为主的RC柱类别的去除准则。使用面向对象的软件框架以可扩展的形式实现开发的计算模型。该计算模型用于模拟先前的许多关于抗震细节的竣工和FRP加固RC柱的实验研究。仿真结果显示出不仅可以预测竣工响应,还可以预测FRP改造的效果和实用性极限。针对动力相关的原理,从有限元模型中突然删除结构元素的时间相关问题,开发了一种解析公式。使用理想的基准问题对自动元素去除算法进行分析公式化,计算实现并进行鲁棒性数值测试。扩展了该公式,以包括折叠柱和结构其余部分之间碰撞的简化说明。论文的最后是通过使用两个试验台结构系统展示已开发的渐进倒塌模拟工具的示范应用,这两个试验台结构系统分别代表部分填充有未增强砌体(URM)墙的较旧的一层和五层RC框架建筑。这些应用包括:(i)对渐进式倒塌响应的确定性评估(即URM墙和RC框架之间的相互作用,单元倒塌模式和顺序,

著录项

  • 作者

    Talaat, Mohamed M.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 348 p.
  • 总页数 348
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号