首页> 外文学位 >Phase separation and applications of amorphous gold-silicon alloys.
【24h】

Phase separation and applications of amorphous gold-silicon alloys.

机译:非晶态金-硅合金的相分离和应用。

获取原文
获取原文并翻译 | 示例

摘要

The pursuit of nanoscaled architectures has demanded new synthesis methodologies for creating and organizing metal particles. The challenge still remains to create well-defined structures with a tight control over size and size distribution. This dissertation will describe a method for creating gold-rich nanoparticles through the amorphous phase separation of silicon-rich gold-silicon sputtered alloys. Using this technique, gold-rich nanoparticles, ranging from 2--3 nm in diameter, can be routinely grown with large aeral densities. Both electron microscopy and diffraction studies indicate that Au-rich nanoparticles have an amorphous-like character.; The phase separation process is modelled by a spinodal decomposition mechanism. Calculated fastest growing composition wavelengths are in close agreement with observed average particle-to-particle spacing. Extended anneals close to the eutectic temperature demonstrate the remarkable stability of these particles and suggest that their amorphous character is thermodynamically stable due to their relatively low interfacial energy and high degree of curvature.; Fundamental studies of annealed gold-silicon/silicon multilayers reveal that Au-rich particles act as catalysts for the transformation of amorphous silicon via metal-induced crystallization. Crystalline silicon grains are modelled as tapered nanowires behind Au-rich nanoparticles. It is calculated that particles with a radius less than 1.2 nm are unable to induce crystallization, and these findings are experimentally confirmed by TEM characterization.; Finally, gold-rich nanoparticles are successfully incorporated into metal oxide semiconductor (MOS) structures for use as a charge trapping layer in floating gate devices. From high frequency capacitance measurements, MOS structures containing these particles showed a significant hysteresis as compared to structures without nanoparticles. The difference in behavior is attributed to additional charge storage in either nanoparticle or nanoparticle interface states. For devices operating in the Fowler-Nordheim tunnelling regime, a memory window of 0.6 V can be achieved under a 10 V program. The memory window can be enhanced with further increases of programming voltages and/or write times. This work represents one of the first examples of metal nanoparticles, formed by phase separation, utilized as a floating gate layer for non-volatile memory applications.
机译:对纳米级体系结构的追求要求用于产生和组织金属颗粒的新的合成方法。在严格控制尺寸和尺寸分布的情况下,创建定义明确的结构仍然是挑战。本文将介绍一种通过富硅金硅溅射合金的非晶相分离产生富金纳米颗粒的方法。使用这种技术,直径为2--3 nm的富含金的纳米颗粒可以常规地以较大的金属密度生长。电子显微镜和衍射研究均表明,富金纳米颗粒具有无定形特征。通过旋节线分解机制对相分离过程进行建模。计算得出的增长最快的成分波长与观察到的平均粒子间距离非常一致。接近共晶温度的长时间退火证明了这些颗粒的显着稳定性,并表明它们的非晶态特性由于其相对较低的界面能和较高的曲率而具有热力学稳定性。对退火的金-硅/硅多层膜的基础研究表明,富金颗粒充当通过金属诱导的结晶转化非晶硅的催化剂。结晶硅晶粒被建模为富金纳米粒子后面的锥形纳米线。经计算,半径小于1.2 nm的颗粒无法诱导结晶,这些发现已通过TEM表征进行了实验证实。最后,富金纳米颗粒成功地掺入了金属氧化物半导体(MOS)结构中,用作浮栅器件中的电荷捕获层。根据高频电容测量,与没有纳米颗粒的结构相比,包含这些颗粒的MOS结构显示出显着的磁滞现象。行为上的差异归因于处于纳米粒子或纳米粒子界面状态的额外电荷存储。对于在Fowler-Nordheim隧穿状态下运行的设备,在10 V的程序下可以实现0.6 V的存储窗口。可以通过进一步增加编程电压和/或写入时间来增强存储窗口。这项工作代表了通过相分离形成的金属纳米颗粒的第一个例子,它被用作非易失性存储应用的浮栅层。

著录项

  • 作者

    Chandra, Aditi.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号