首页> 外文学位 >Multisensor fusion remote sensing technology for assessing multitemporal responses in ecohydrological systems.
【24h】

Multisensor fusion remote sensing technology for assessing multitemporal responses in ecohydrological systems.

机译:多传感器融合遥感技术,用于评估生态水文学系统中的多时相响应。

获取原文
获取原文并翻译 | 示例

摘要

This study aims at presenting a systematic soil moisture estimation method for the Choke Canyon Reservoir Watershed (CCRW), a semiarid watershed with an area of over 14,200 km2 in south Texas. With the aid of five corner reflectors, the RADARSAT-1 Synthetic Aperture Radar (SAR) imageries of the study area acquired in April and September 2004 were processed by both radiometric and geometric calibrations at first. New soil moisture estimation models derived by genetic programming (GP) technique were then developed and applied to support the soil moisture distribution analysis. The GP-based nonlinear function derived in the evolutionary process uniquely links a series of crucial topographic and geographic features. Included in this process are slope, aspect, vegetation cover, and soil permeability to compliment the well-calibrated SAR data. Research indicates that the novel application of GP proved useful for generating a highly nonlinear structure in regression regime, which exhibits very strong correlations statistically between the model estimates and the ground truth measurements (volumetric water content) on the basis of the unseen data sets. In an effort to produce the soil moisture distributions over seasons, it eventually leads to characterizing local- to regional-scale soil moisture variability and performing the possible estimation of water storages of the terrestrial hydrosphere.; A new evolutionary computational, supervised classification scheme ( Riparian Classification Algorithm, RICAL) was developed and used to identify the change of riparian zones in a semi-arid watershed temporally and spatially. The case study uniquely demonstrates an effort to incorporating both vegetation index and soil moisture estimates based on Landsat 5 TM and RADARSAT-1 imageries while trying to improve the riparian classification in the Choke Canyon Reservoir Watershed (CCRW), South Texas. The estimation of soil moisture based on RADARSAT-1 Synthetic Aperture Radar (SAR) satellite imagery as previously developed was used. Eight commonly used vegetation indices were calculated from the reflectance obtained from Landsat 5 TM satellite images. The vegetation indices were individually used to classify vegetation cover in association with genetic programming algorithm. The soil moisture and vegetation indices were integrated into Landsat TM images based on a pre-pixel channel approach for riparian classification. Two different classification algorithms were used including genetic programming, and a combination of ISODATA and maximum likelihood supervised classification. The white box feature of genetic programming revealed the comparative advantage of all input parameters. The GP algorithm yielded more than 90% accuracy, based on unseen ground data, using vegetation index and Landsat reflectance band 1, 2, 3, and 4. The detection of changes in the buffer zone was proved to be technically feasible with high accuracy. Overall, the development of the RICAL algorithm may lead to the formulation of more effective management strategies for the handling of non-point source pollution control, bird habitat monitoring, and grazing and live stock management in the future.; Geo-environmental information amassed in this study includes soil permeability, surface temperature, soil moisture, precipitation, leaf area index (LAI) and normalized difference vegetation index (NDVI). With the aid of a remote sensing-based GIP analysis, only five locations out of more than 800 candidate sites were selected by the spatial analysis, and then confirmed by a field investigation. The methodology developed in this remote sensing-based GIP analysis will significantly advance the state-of-the-art technology in optimum arrangement/distribution of water sensor platforms for maximum sensing coverage and information-extraction capacity.; To more efficiently use the limited amount of water or to resourcefully provide adequate time for flood warning, the results have led us to s
机译:这项研究旨在为扼流峡谷水库集水区(CCRW)提出一种系统的土壤水分估算方法,这是德克萨斯州南部面积超过14,200 km2的半干旱流域。在五个角反射器的帮助下,首先对2004年4月和2004年9月获得的研究区域的RADARSAT-1合成孔径雷达(SAR)图像进行了辐射和几何校准。然后,开发了通过遗传编程(GP)技术得出的新的土壤水分估算模型,并将其应用于支持土壤水分分布分析。在进化过程中派生的基于GP的非线性函数将一系列关键的地形和地理特征独特地联系在一起。此过程包括坡度,坡向,植被覆盖率和土壤渗透率,以补充经过良好校准的SAR数据。研究表明,GP的新应用被证明可用于在回归机制中生成高度非线性的结构,该模型在未知数据的基础上在模型估计值与地面实测值(体积水分含量)之间显示出非常强的统计相关性。为了产生整个季节的土壤水分分布,最终导致表征局部到区域尺度的土壤水分变异性,并可能对陆地水圈的储水量进行估算。开发了一种新的进化计算,监督分类方案(Riparian分类算法,RICAL),并用于识别半干旱流域在时间和空间上的河岸带变化。案例研究独特地展示了在Landsat 5 TM和RADARSAT-1影像的基础上,结合植被指数和土壤湿度估算的努力,同时试图改善南德克萨斯州乔克峡谷水库集水区(CCRW)的河岸分类。使用了之前开发的基于RADARSAT-1合成孔径雷达(SAR)卫星图像的土壤湿度估算。根据从Landsat 5 TM卫星图像获得的反射率,计算出八个常用的植被指数。结合遗传规划算法,分别使用植被指数对植被覆盖度进行分类。基于前像素通道方法,将土壤水分和植被指数整合到Landsat TM图像中,进行河岸分类。使用了两种不同的分类算法,包括遗传编程,ISODATA和最大似然监督分类的组合。基因编程的白盒功能显示了所有输入参数的比较优势。使用植被指数和Landsat反射带1、2、3和4,基于看不见的地面数据,GP算法产生的准确率超过90%。事实证明,缓冲区的变化检测在技术上具有较高的准确性。总体而言,RICAL算法的发展可能会导致制定更有效的管理策略,以处理未来的面源污染控制,鸟类栖息地监控以及放牧和牲畜管理。在这项研究中积累的地球环境信息包括土壤渗透率,地表温度,土壤湿度,降水,叶面积指数(LAI)和归一化植被指数(NDVI)。借助基于遥感的GIP分析,通过空间分析仅从800多个候选站点中选择了五个位置,然后通过现场调查进行了确认。这种基于遥感的GIP分析中开发的方法将极大地提高水传感器平台的最佳布置/分配方面的最新技术,以实现最大的传感覆盖范围和信息提取能力。为了更有效地利用有限的水量或充分利用充足的时间进行洪水预警,结果使我们不得不

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号