首页> 外文学位 >Modeling of polymer melt/nanoparticle composites and magneto-rheological fluids.
【24h】

Modeling of polymer melt/nanoparticle composites and magneto-rheological fluids.

机译:聚合物熔体/纳米颗粒复合材料和磁流变流体的建模。

获取原文
获取原文并翻译 | 示例

摘要

Polymers composed with carbon nanofibers, carbon nanotubes, and nanoclays show remarkable promise for enhancements of mechanical, electrical, and thermal properties of polymeric materials. This research work describes an experimental and modeling study of nanoparticle/polymer composite systems in their melt processing and performance phases. The goal is to create a predictive understanding of the coupling of processing to the development of the performance properties of the composite, focusing on the measuring and modeling of nano- and mesoscale features, and how they dictate macroscale behavior.; Nanostructurally-based constitutive models are developed to describe the comprehensive characterization of rheology, flow/particle interaction, and structure development of aqueous nanofiber suspensions and polymer nanocomposites. The aqueous nanofiber suspensions are modeled as elastic/rigid dumbbells suspended in a Newtonian solvent, where the bulk rheological properties are deduced from the microstructural measurements and all but one coefficients in the constitutive equations are specified not by a fit to macroscale experimental flow measurements, but rather in terms of primitive measurements of particle microstructure, carrier fluid viscosity and density, and temperature.; The rheological behavior of carbon nanofiber/polystyrene (CNF/PS) composites in their melt phase has been characterized as rigid rods in a viscoelastic fluid matrix: the nanofibers are described by rigid rod model and the modified Giesekus model is employed to describe the polymer behavior. The constitutive models, which include the strain-rate-dependent inter-fiber interaction parameter and polymer-fiber interaction parameter, successfully capture the transient and steady shear behavior of the CNF/PS composites and correctly predict the nanofiber orientations.; Based on the successes of microstructurally based models for CNF suspensions, kinetic theory-based models of MR fluids are developed by incorporating a magnetic force. The model characterizes the 3-D MR response of the composite system to mechanical and magnetic inputs in terms of primitive measurements of the carrier fluid and microstructural characterization of the metallic particles. This fundamental, 3-D, microstructurally based model will replace the inherent empiricism of the current modeling with a fundamental understanding of the mechanical and magnetic coupling in the fluid at the particle level.; All these models are validated through comparison of model predictions to experimental measurements of nano-/macro-scale behavior.
机译:由碳纳米纤维,碳纳米管和纳米粘土组成的聚合物显示出可提高聚合物材料的机械,电和热性能的显着前景。这项研究工作描述了纳米颗粒/聚合物复合材料系统在熔融加工和性能阶段的实验和建模研究。目标是建立对加工与复合材料性能特性发展的耦合的预测性理解,重点是对纳米和中尺度特征的测量和建模,以及它们如何指示宏观尺度行为。开发了基于纳米结构的本构模型,以描述流变学,流/粒子相互作用以及水性纳米纤维悬浮液和聚合物纳米复合材料的结构发展的综合表征。将水性纳米纤维悬浮液建模为悬浮在牛顿溶剂中的弹性/刚性哑铃,其中从微观结构测量推导了整体流变性能,并且本构方程中除一个系数以外的所有系数均未通过适合于大规模实验流量测量的方式指定,但而是对颗粒的微观结构,载液的粘度和密度以及温度的原始测量。碳纳米纤维/聚苯乙烯(CNF / PS)复合材料在其熔融相中的流变行为已被表征为粘弹性流体基质中的刚性棒:用刚性棒模型描述了纳米纤维,并使用改进的Giesekus模型描述了聚合物的行为。 。本构模型包括取决于应变率的纤维间相互作用参数和聚合物-纤维相互作用参数,成功地捕获了CNF / PS复合材料的瞬态和稳态剪切行为,并正确预测了纳米纤维的取向。基于CNF悬浮液基于微观结构的模型的成功经验,通过结合磁力开发了基于动力学理论的MR流体模型。该模型根据载流体的原始测量和金属颗粒的微观结构表征了复合系统对机械和磁输入的3-D MR响应。这种基于3D微观结构的基本模型将以对粒子级流体中的机械和磁耦合的基本理解来代替当前模型的固有经验。通过将模型预测与纳米/宏观行为的实验测量值进行比较,可以验证所有这些模型。

著录项

  • 作者

    Wang, Yingru.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号