首页> 外文学位 >Crystal chemistry, chemical stability, and electrochemical properties of layered oxide cathodes of lithium ion batteries.
【24h】

Crystal chemistry, chemical stability, and electrochemical properties of layered oxide cathodes of lithium ion batteries.

机译:锂离子电池层状氧化物阴极的晶体化学,化学稳定性和电化学性质。

获取原文
获取原文并翻译 | 示例

摘要

Lithium ion batteries are now widely used as power sources in mobile electronics due to their high energy density. Layered LiCoO2 is currently employed as the cathode material in commercial lithium ion batteries, but its reversible capacity is limited to only 50% of its theoretical capacity. Co is also relatively expensive and toxic. In this regard, layered LiNi 1-y-zMnyCOzO2 cathodes have become appealing recently as they offer higher capacity, lower cost, and enhanced safety compared to the LiCoO2 cathode. This dissertation explores the chemical and structural factors and instabilities that control and limit the electrochemical performance parameters such as the capacity, cyclability, and rate capability of various layered LiNi1-y-zMnyCo zO2 cathodes.; A quantitative determination of proton contents in various chemically delithiated oxide cathodes using Prompt Gamma Ray Activation Analysis (PGAA) indicates that while the delithiated layered Li1-xCoO2, Li1-xNi1/3Mn1/3Co1/3O2, and Li1-xNi1/2Mn1/2O2 have a significant amount of proton in the lattice at deep lithium extraction, orthorhombic Li 1-xMnO2, spinel Li1-xMn2O4, and olivine Li1-xFePO4 do not encounter such proton insertion. The results are complemented by mass spectrometric and thermogravimetric analysis data. The differences are attributed to the differences in the chemical instability of the various cathodes.; From a systematic investigation of three series of layered LiNi 1-y-zMnyCozO2 compositions (LiNi0.5-yMn0.5-yCo2yO2, LiCo 0.5-yMn0.5-yNi2yO2, LiNi0.5-y Co0.5-yMn2yO2), those around LiNi 1/3Mn1/3Co1/3O2 are found to have optimized electrochemical performances with high reversible capacity, good cyclability, and good rate capability. The results are explained on the basis of chemical instability in the Co-rich compositions, lithium deficiency and concurrent cation disorder in the Ni-rich compositions, and existence of the impurity phase Li2MnO3 in the Mn-rich compositions. The electrochemical rate capability is found to bear a clear relationship to the chemical lithium extraction rate, which decreases with decreasing Co content due to an increasing cation disorder. Additionally, the lithium extraction rate is found to influence the structure of the chemically delithiated end members HxNi 0.5-yMn0.5-yCo2yO2; the structure changes from P3 to O1 to O3 with decreasing Co content 2y.; A comparison of the chemical stability of the Na0.75-xCoO 2 system shows that it maintains the theoretical value of the oxidation state of cobalt during chemical sodium extraction to low sodium contents of (0.75-x) ≈ 0.3, while Li1-xCoO2 incorporates protons for (1-x) 0.5. The differences between two systems are discussed based on the crystal structure and the position of Co3+/4+:3d band relative to the top of the O2-:2p band.
机译:锂离子电池由于能量密度高,现在已广泛用作移动电子设备中的电源。目前,层状LiCoO2被用作商用锂离子电池的正极材料,但其可逆容量仅限于其理论容量的50%。 Co也相对昂贵且有毒。在这方面,与LiCoO2阴极相比,分层LiNi 1-y-zMnyCOzO2阴极最近变得有吸引力,因为它们具有更高的容量,更低的成本以及更高的安全性。本文探讨了控制和限制电化学性能参数的化学和结构因素以及不稳定性,这些参数包括各种层状LiNi1-y-zMnyCo zO2阴极的容量,循环性和倍率性能。使用快速伽马射线活化分析(PGAA)定量测定各种化学脱锂氧化物阴极中的质子含量表明,虽然脱锂层状Li1-xCoO2,Li1-xNi1 / 3Mn1 / 3Co1 / 3O2和Li1-xNi1 / 2Mn1 / 2O2具有深度锂萃取时晶格中的大量质子,斜方晶Li 1-xMnO2,尖晶石Li1-xMn2O4和橄榄石Li1-xFePO4不会遇到这种质子插入。质谱和热重分析数据对结果进行了补充。所述差异归因于各个阴极的化学不稳定性的差异。通过对三个系列的层状LiNi 1-y-zMnyCozO2成分(LiNi0.5-yMn0.5-yCo2yO2,LiCo 0.5-yMn0.5-yNi2yO2,LiNi0.5-y Co0.5-yMn2yO2)的系统研究发现LiNi 1 / 3Mn1 / 3Co1 / 3O2具有最佳的电化学性能,具有高的可逆容量,良好的循环性和良好的倍率性能。基于富钴组合物中的化学不稳定性,富镍组合物中锂缺乏和同时发生的阳离子无序以及富锰组合物中存在杂质相Li2MnO3来解释结果。发现电化学速率能力与化学锂的萃取速率有着明显的关系,由于阳离子紊乱的增加,该速率随着Co含量的降低而降低。另外,发现锂的提取速率影响化学脱锂的末端构件HxNi 0.5-yMn0.5-yCo2yO2的结构;随着Co含量2y的减少,结构从P3变成O1再变成O3。 Na0.75-xCoO 2系统的化学稳定性的比较表明,在低钠含量(0.75-x)&ap;时,它保持了化学钠提取过程中钴氧化态的理论值。 Li1-xCoO2的质子含量为(1-x)<0.5。基于晶体结构和Co3 + / 4 +:3d谱带相对于O2-:2p谱带顶部的位置,讨论了两种体系之间的差异。

著录项

  • 作者

    Choi, Jeh Won.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号