首页> 外文学位 >Crystal structure, microstructure and magnetic properties of inert gas condensed iron-platinum alloys.
【24h】

Crystal structure, microstructure and magnetic properties of inert gas condensed iron-platinum alloys.

机译:惰性气体冷凝铁铂合金的晶体结构,微观结构和磁性。

获取原文
获取原文并翻译 | 示例

摘要

Exchange-spring nanocomposite permanent magnets have received a great deal of attention for their potential for improved energy products. Predicted results, however, have been elusive. Optimal properties rely on a uniformly fine nanostructure. Particularly, the scale of the soft magnetic phase must be below approximately 10 nm to ensure complete exchange coupling. Inert gas condensation (IGC) is an ideal processing route to produce sub-10 nm clusters. Two distinct nanostructures have been produced. In the first, Fe clusters were embedded in an FePt matrix by alternating deposition from two sources. Fe cluster content ranged from 0 to 30 volume percent. Post-deposition multi-step heat treatments converted the FePt from the A1 to L10 structure. An energy product of approximately 21 MGOe was achieved. Properties deteriorated rapidly at Fe cluster concentrations above 14 volume percent due to uncoupled soft magnetic regions (from cluster-cluster contacts) and cooperative reversal. The second nanostructure, designed to overcome those disadvantages, involved intra-cluster structuring. Here, Fe-rich Fe-Pt clusters separated by C (or SiO2) were fabricated. Phase separation into Fe3Pt and FePt and ordering was induced during post-deposition multi-step heat treatments. By confining the soft and hard phases to individual clusters, full exchange coupling was accomplished and cooperative reversal between clusters was effectively eliminated. An energy product of more than 25 MGOe was achieved, and the volume fraction of the soft phase was increased to greater than 0.5 while maintaining a coercivity of 6.5 kOe. The results provide new insight into developing high-energy-product nanostructured permanent magnets.
机译:交换弹簧纳米复合永磁体因其改进能源产品的潜力而备受关注。但是,预测结果却难以捉摸。最佳性能取决于均匀的精细纳米结构。特别地,软磁相的规模必须低于大约10 nm,以确保完全交换耦合。惰性气体冷凝(IGC)是产生低于10 nm团簇的理想工艺路线。已经产生了两种不同的纳米结构。首先,通过从两个源交替沉积将Fe团簇嵌入FePt基质中。铁簇含量为0至30体积%。沉积后的多步热处理将FePt从A1结构转变为L10结构。达到了约21 MGOe的能源积。由于未耦合的软磁区(来自团簇-团簇接触)和协同反转,性能在Fe团簇浓度高于14%(体积)时迅速恶化。为了克服这些缺点而设计的第二个纳米结构涉及集群内部的结构化。在这里,制造了由C(或SiO2)分隔的富铁的Fe-Pt团簇。在沉积后多步热处理过程中,相分离成Fe3Pt和FePt并引起有序化。通过将软阶段和硬阶段限制在单个群集中,可以完成完全交换耦合,并有效消除了群集之间的协作反转。获得了超过25 MGOe的能量积,软相的体积分数增加到大于0.5,同时保持6.5 kOe的矫顽力。结果为开发高能产品纳米结构永磁体提供了新的见识。

著录项

  • 作者

    Rui, Xiangxin.;

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号