首页> 外文学位 >An experimental and computational investigation of shock effects in monocrystalline copper.
【24h】

An experimental and computational investigation of shock effects in monocrystalline copper.

机译:在单晶铜中冲击效应的实验和计算研究。

获取原文
获取原文并翻译 | 示例

摘要

Monocrystalline copper with orientations of [001] and [221] was subjected to shock/recovery experiments at shock pressures of 30 GPa and 57 GPa at 90 K. The microstructural evolution in both specimens was investigated by scanning electron microscopy (Electron Channeling Contrast) and transmission electron microscopy. It was found that the residual microstructures were dependent on orientation, pressure, and heat generation and transfer during shock. At the same shock pressure, different post-shocked microstructures formed in samples with different crystalline orientations. This most likely is because they have different resolved shear stresses on their crystalline planes, due to the different geometric relationship between the shock propagation direction and the samples' crystalline orientations.; The plate impact technique was compared with laser compression. They have varying effects on the defect substructure because of the differences in pulse duration which result in different amounts of heating during shock compression.; Molecular Dynamics (MD) simulations have been conducted to model the plate impact of [001] and [221] monocrystalline copper at a wide range of shock pressures. The initiation of defects and different dislocation structures has been generated due to shock propagation in these two monocrystalline orientations. The orientation of the defects generated is consistent with the microstructure observations. However, there is a difference of several orders of magnitude between MD and experimental results. This striking difference is consistent with other results presented in the literature. One of the possible explanations is that the recovery observations do not reflect the true configuration during shock compression.; The energetics of loop nucleation was analyzed, since they are the primary sources of dislocations in the Meyers model. Two types of shear dislocation loops were considered: perfect and partial dislocation loops. The calculations reveal a transition from perfect dislocation loops at low pressure to partial dislocation loops. This agrees with experimental results in shock compression, which show a clear transition from dislocation cells (enabled by cross slip and relaxation of perfect dislocation) to stacking-fault packet at higher pressures, produced from the expansion of partial dislocation loops.
机译:取向为[001]和[221]的单晶铜在90 K的冲击压力分别为30 GPa和57 GPa的条件下进行了冲击/恢复实验。通过扫描电子显微镜(电子通道对比)研究了两个样品的显微组织演变,透射电子显微镜。发现残余的微观结构取决于冲击过程中的取向,压力以及热量的产生和传递。在相同的冲击压力下,具有不同晶体取向的样品中形成了不同的后冲击微结构。最可能的原因是,由于冲击传播方向和样品的晶体取向之间的几何关系不同,它们在其晶体平面上具有不同的解析剪切应力。将板冲击技术与激光压缩进行了比较。它们对缺陷子结构的影响不同,这是因为脉冲持续时间的差异导致了在冲击压缩过程中产生不同量的热量。已经进行了分子动力学(MD)模拟,以模拟在广泛的冲击压力下[001]和[221]单晶铜的板冲击。由于冲击在这两个单晶取向上的传播,已经产生了缺陷和不同的位错结构。产生的缺陷的取向与微观结构观察一致。但是,MD和实验结果之间存在几个数量级的差异。这种惊人的差异与文献中提出的其他结果一致。可能的解释之一是,恢复观察未反映冲击压缩过程中的真实构造。分析了环成核的能量,因为它们是Meyers模型中位错的主要来源。考虑了两种类型的剪切位错环:完美位错环和部分位错环。计算表明从低压下的理想位错环向部分位错环过渡。这与冲击压缩的实验结果一致,后者显示了位错单元(通过错位滑移和完全位错的松弛而实现)从局部位错环的扩展产生的,在较高压力下向堆叠断裂包的明显过渡。

著录项

  • 作者

    Cao, Buyang.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 222 p.
  • 总页数 222
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号