首页> 外文学位 >Protein engineering and design of thermostable biosensors.
【24h】

Protein engineering and design of thermostable biosensors.

机译:蛋白质工程和热稳定生物传感器的设计。

获取原文
获取原文并翻译 | 示例

摘要

Here I describe the application of rational protein engineering of bacterial periplasmic binding proteins to the design of thermostable biosensors. Periplasmic glucose- and ribose-binding proteins from thermophilic organisms have been identified, cloned and characterized. The structure of periplasmic glucose-binding protein from Thermotoga maritima (tmGBP) has been solved to 1.7 A resolution by X-ray crystallography. A series of robust glucose biosensors have been constructed by coupling single, environmentally sensitive fluorophores to unique cysteines introduced by site-specific mutagenesis at positions responsive to ligand-induced conformational changes. Among tmGBP-based glucose biosensors, the Y13C•Cy5 conjugate signals strongly and responds to glucose concentrations appropriate for in vivo monitoring of blood glucose levels (1-30 mM). The Y13C•Cy5 conjugate has been immobilized onto microtiter plates in both semi-specific and orientation-specific manners to give reversible responses to glucose. The immobilized protein also retains its response after long term storage at room temperature.;In addition, E. coli ribose-binding protein (ecRBP) has been stabilized by rational protein engineering to enhance its suitability as a scaffold protein for use in computational design. Several approaches have been exploited to improve the thermostability of ecRBP, including the introduction of mutations to decrease the entropy of the unfolded form, the replacement of un-favored polar amino-acids in the protein core with non-polar residues, the engineering of disulfide bonds, and the incorporation of features from thermophilic RBPs. The stabilizing mutations achieved from these approaches were evaluated individually and then combined in a stepwise manner, resulting in a variant with a melting temperature 17.5°C higher than ecRBP, which can also serve as a stable scaffold protein for biosensor design.
机译:在这里,我描述了细菌周质结合蛋白的合理蛋白工程在热稳定生物传感器设计中的应用。已经鉴定,克隆和鉴定了来自嗜热生物的周质葡萄糖和核糖结合蛋白。 X射线晶体学已将来自滨海嗜热菌(tmGBP)的周质葡萄糖结合蛋白的结构解析为1.7 A分辨率。通过将单个对环境敏感的荧光团与对位配体诱导的构象变化响应的位点特异性诱变引入的独特半胱氨酸偶联,构建了一系列坚固的葡萄糖生物传感器。在基于tmGBP的葡萄糖生物传感器中,Y13C•Cy5偶联物强烈发出信号并响应适合体内监测血糖水平(1-30 mM)的葡萄糖浓度。 Y13C•Cy5共轭物已以半特异性和定向特异性方式固定在微量滴定板上,以产生对葡萄糖的可逆反应。固定化的蛋白质在室温下长期保存后也能保持其响应。此外,大肠杆菌核糖结合蛋白(ecRBP)已通过合理的蛋白质工程稳定化,从而增强了其在计算设计中用作支架蛋白质的适用性。已开发出多种方法来提高ecRBP的热稳定性,包括引入突变以降低未折叠形式的熵,用非极性残基替代蛋白质核心中不利的极性氨基酸,二硫键工程键,并结合了嗜热RBP的特征。分别评估了从这些方法获得的稳定突变,然后以逐步方式进行组合,从而得到了一个融合温度比ecRBP高17.5°C的变异体,该变异体还可以用作生物传感器设计的稳定支架蛋白。

著录项

  • 作者

    Tian, Yaji.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号