首页> 外文学位 >Three-dimensional nanoelectronic device simulation using spectral element methods.
【24h】

Three-dimensional nanoelectronic device simulation using spectral element methods.

机译:使用光谱元素方法的三维纳米电子器件仿真。

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this thesis is to develop an efficient 3-Dimensional (3-D) nanoelectronic device simulator. Specifically, the self-consistent Schrodinger-Poisson model was implemented in this simulator to simulate band structures and quantum transport properties. Also, an efficient fast algorithm, spectral element method (SEM), was used in this simulator to achieve spectral accuracy where the error decreases exponentially with the increase of sampling densities and the basis order of the polynomial functions, thus significantly reducing the CPU time and memory usage. Moreover, within this simulator, a perfectly matched layer (PML) boundary condition method was used for the Schrodinger solver, which significantly simplifies the problem and reduces the computational time. Furthermore, the effective mass in semiconductor devices was treated as a full anisotropic mass tensor, which provides an excellent tool to study the anisotropy characteristics along arbitrary orientation of the device.;Nanoelectronic devices usually involve the simulations of energy band and quantum transport properties. One of the models to perform these simulations is by solving a self-consistent Schrodinger-Poisson system. Two efficient fast algorithms, spectral grid method (SGM) and SEM, are investigated and implemented in this thesis. The spectral accuracy is achieved in both algorithms, whose errors decrease exponentially with the increase of the sampling density and basis orders.;The spectral grid method is a pseudospectral method to achieve a high-accuracy result by choosing special nonuniform grid set and high-order Lagrange interpolants for a partial differential equation. Spectral element method is a high-order finite element method which uses the Gauss-Lobatto-Legendre (GLL) polynomials to represent the field variables in the Schrodinger-Poisson system and, therefore, to achieve spectral accuracy.;We have implemented the SGM in the Schrodinger equation to solve the energy band structures, and found that for a typical quantum well, SGM is about 51 times faster for 1% and 295 times faster for 0.1% accuracy, than the second-order finite-difference method, respectively. It is, however, complex for SGM to deal with boundary conditions. We have also investigated and implemented the SEM in the self-consistent Schrodinger-Poisson system to solve the band structure in a quantum well structure, and found that the error does converge exponentially with the increase of the sampling density and basis order. Therefore, we chose SEM to implement our 3-D self-consistent Schrodinger-Poisson solver for quantum transport simulations.;During our investigation of quantum transport simulations, we found that the traditional applied boundary condition for the Schrodinger equation, the quantum transmitting boundary method (QTBM), is costly because it needs to independently consider each mode of incident waves, reflected waves, and transmitted waves from each contact region and take a summation up to a large number of modes. Therefore, we proposed and implemented a PML boundary method to simplify the implementation. The PML method is a method to extend contact regions to thin layers of perfectly absorbing material, which can treat the transmitted waves as a total wave and also achieve zero reflected waves, thus simplifying the problem. It can significantly reduce the computational cost without loss of accuracy. We have proved the validity of the PML method from theoretical proof and numerical results, and shown the exponential convergence of the SEM. Also, we have shown the utility of the Schrodinger solver using the above SEM and PML method by a waveguide example, a carbon nanotube example and a multiple-terminal quantum dot device example. Moreover, in our implementation, we have used the effective mass in the semiconductor material as a full anisotropic mass tensor, which provides an excellent tool for studying the anisotropic characteristics along arbitrary orientation of the device.;Finally, we have implemented the Poisson solver, and completed the implementation of the self-consistent Schrodinger-Poisson solver for the quantum transport simulation. We have tested the validity and convergence of the Poisson solver by a parallel plate example, and a spherical doped carrier example. Also, we have tested the validity of the self-consistent Schrodinger-Poisson solver by a carbon nanotube example. (Abstract shortened by UMI.)
机译:本文的目的是开发一种高效的三维(3-D)纳米电子器件模拟器。具体而言,在此模拟器中实现了自洽Schrodinger-Poisson模型,以模拟能带结构和量子传输性质。此外,在此模拟器中使用了一种高效的快速算法,即光谱元素法(SEM),以实现光谱精度,其中误差随采样密度和多项式函数的基阶的增加呈指数下降,从而显着减少了CPU时间和内存使用情况。此外,在此模拟器中,Schrodinger求解器使用了完全匹配层(PML)边界条件方法,该方法大大简化了问题并减少了计算时间。此外,半导体器件中的有效质量被视为一个完整的各向异性质量张量,这为研究器件在任意方向上的各向异性特征提供了极好的工具。纳米电子器件通常涉及能带和量子传输性质的模拟。执行这些模拟的模型之一是通过求解自洽的Schrodinger-Poisson系统。本文研究并实现了两种有效的快速算法:光谱网格法(SGM)和SEM。两种算法均实现了光谱精度,其误差随着采样密度和基阶的增加而呈指数下降。光谱网格法是通过选择特殊的非均匀网格集和高阶来获得高精度结果的伪光谱方法。偏微分方程的Lagrange插值。频谱元素方法是一种高阶有限元方法,它使用高斯-洛巴托-莱根特(GLL)多项式来表示Schrodinger-Poisson系统中的场变量,从而实现频谱精度。通过Schrodinger方程求解能带结构,发现对于典型的量子阱,SGM的速度分别比二阶有限差分法快1倍51倍,精度为0.1%时295倍。但是,SGM处理边界条件很复杂。我们还研究并在自洽Schrodinger-Poisson系统中实现了SEM,以解决量子阱结构中的能带结构,发现误差确实随着采样密度和基阶的增加而呈指数收敛。因此,我们选择SEM来实现我们的3-D自洽Schrodinger-Poisson求解器以进行量子传输模拟。;在研究量子输运模拟时,我们发现Schrodinger方程的传统应用边界条件是量子传输边界方法QTBM(QTBM)之所以昂贵,是因为它需要独立考虑来自每个接触区域的入射波,反射波和透射波的每种模式,并对多个模式进行求和。因此,我们提出并实现了一种PML边界方法以简化实现。 PML方法是一种将接触区域扩展到完美吸收材料的薄层的方法,该方法可以将透射波视为总波,并且还可以实现零反射波,从而简化了问题。它可以显着降低计算成本,而不会损失准确性。我们从理论证明和数值结果证明了PML方法的有效性,并证明了SEM的指数收敛性。此外,我们通过波导示例,碳纳米管示例和多端量子点设备示例显示了使用上述SEM和PML方法的Schrodinger求解器的实用性。此外,在我们的实现中,我们将半导体材料中的有效质量用作完整的各向异性质量张量,这为研究器件在任意方向上的各向异性特性提供了极好的工具。最后,我们实现了泊松求解器,并完成了用于量子传输模拟的自洽Schrodinger-Poisson求解器的实现。我们已经通过平行板实例和球形掺杂载体实例测试了泊松求解器的有效性和收敛性。此外,我们通过碳纳米管实例测试了自洽Schrodinger-Poisson求解器的有效性。 (摘要由UMI缩短。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号