首页> 外文学位 >Acid catalysis by polyoxometalates: Alkylation chemistry and deactivation.
【24h】

Acid catalysis by polyoxometalates: Alkylation chemistry and deactivation.

机译:多金属氧酸盐对酸的催化作用:烷基化化学和失活。

获取原文
获取原文并翻译 | 示例

摘要

Many industrially-relevant hydrocarbon conversion processes are acid-catalyzed, such as cracking, isomerization, oligomerization, and alkylation. Solid acid catalysts are applied industrially in the first three processes. However, the process of isoalkane and alkene alkylation is currently carried out using homogeneous HF and H2SO4 catalysts, which suffer from problems of corrosion, waste disposal, and requirements of catalyst separation. Unfortunately, over 30 years of research has not produced an ideal solid acid catalyst, as all materials examined have showed rapid deactivation. Fundamental studies into the characterization of solid acids and their reactivity are needed to determine the requirements of an active solid acid for alkylation.; Heteropolyacids (HPAs) are active for the alkylation of isobutane with n-butene, but suffer from rapid deactivation. Previous results from this laboratory indicated that treatment with water vapor may partially regenerate a deactivated HPA catalyst. Herein, quantum-chemical methods, specifically density functional theory (DFT) calculations, are used to investigate the energetics of proposed deactivation mechanisms. Reaction energies and activation barriers are determined by DFT for the proposed deactivation processes and further used to establish reaction rates and equilibrium constants to clarify whether a proposed mechanism may explain the deactivation process. Emphasis is placed on understanding how water may affect the deactivation process and on determining how including water in the reaction environment may slow or prevent deactivation. This research also seeks to further our understanding of acid-catalysis mechanisms over heteropolyacids by providing insight into the requirements of an effective solid-acid catalyst for the alkylation of isobutane and n-butene.; Three deactivation modes are proposed to possibly contribute to the loss of catalyst activity: localization of protons in inactive locations, desorption of structural water molecules from the HPA surface, and the build up of heavy hydrocarbons on the catalyst surface. The energetics of each of these processes are determined, and their relative contribution to catalyst deactivation is discussed. The mobility of protons, essential to the first two deactivation mechanisms, is explored in detail. The energetics of the elementary steps in the alkylation mechanism are determined to elucidate the pathways which lead to heavy hydrocarbon build up.
机译:许多与工业相关的烃转化过程都经过酸催化,例如裂化,异构化,低聚和烷基化。固体酸催化剂在前三个过程中工业应用。然而,异链烷烃和烯烃烷基化的方法目前是使用均相的HF和H 2 SO 4催化剂进行的,它们具有腐蚀,废物处理和催化剂分离要求的问题。不幸的是,超过30年的研究并未产生理想的固体酸催化剂,因为所检查的所有材料均显示出快速失活。需要对固体酸的表征及其反应性进行基础研究,以确定活性固体酸对烷基化的要求。杂多酸(HPA)对异丁烷与正丁烯的烷基化反应具有活性,但会迅速失活。该实验室的先前结果表明,用水蒸气处理可能会部分再生失活的HPA催化剂。在本文中,量子化学方法,特别是密度泛函理论(DFT)计算,用于研究所提出的失活机理的能量学。反应能量和活化势垒由DFT确定拟议的失活过程,并进一步用于建立反应速率和平衡常数,以阐明拟议的机理是否可以解释失活过程。重点放在了解水如何影响失活过程,以及确定反应环境中的水如何减慢或防止失活。该研究还通过深入了解有效的固体酸催化剂对异丁烷和正丁烯进行烷基化的要求,进一步加深了我们对杂多酸的酸催化机理的理解。提出了三种失活模式可能导致催化剂活性的降低:质子在非活性位置的定位,结构水分子从HPA表面的解吸以及催化剂表面重烃的积累。确定了每个过程的能量,并讨论了它们对催化剂失活的相对作用。详细探讨了前两个失活机制必不可少的质子迁移率。确定烷基化机理中基本步骤的能量,以阐明导致重烃积累的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号