首页> 外文学位 >Formation and development of the tip leakage vortex in a simulated axial compressor with unsteady inflow.
【24h】

Formation and development of the tip leakage vortex in a simulated axial compressor with unsteady inflow.

机译:具有不稳定流入的模拟轴向压缩机中尖端泄漏涡的形成和发展。

获取原文
获取原文并翻译 | 示例

摘要

The interaction between rotor blade tip leakage vortex and inflow disturbances, such as encountered in shrouded marine propulsors, was simulated in the Virginia Tech Linear Cascade Wind Tunnel equipped with a moving endwall system. Upstream of the blade row, idealized periodic inflow unsteadiness was generated using vortex generator pairs attached to the endwall at the same spacing as the blade spacing. At three tip gap settings, 1.7%c, 3.3% c and 5.7%c, the flow near the lower endwall of the center blade passage was investigated through three-component mean velocity and turbulence distributions measured by four-sensor hotwires. Besides time-averaged data, the measurements were processed for phase-locked analysis, with respect to pitchwise locations of the vortex generators relative to the blade passage. Moreover, surface pressure distributions at the blade tip were acquired at eight tip gaps from 0.87%c to 12.9%c. Measurements of pressure-velocity correlation were also performed with wall motion but without inflow disturbances.; Achieved in this study is an understanding of the characteristics and structures of the tip leakage vortex at its initial formation. The mechanism of the tip leakage vortex formation seems to be independent of the tip gap setting. The tip leakage vortex consists of a vortical structure and a region of low streamwise-momentum fluid next to the endwall. The vortical structure is initially attached to the blade tip that creates it. This structure picks up circulation shed from that blade tip, as well as those from the endwall boundary layer, and becomes stronger with downstream distance. Partially induced by the mirror images in the endwall, the vortical structure starts to move across the passage resulting in a reduction in its rotational strength as the cross sectional area of the vortex increases but little circulation is added. The larger the tip gap, the longer the vortical structure stays attached to the blade tip, and the stronger the structure when it reaches downstream of the passage.; Phased-averaged data show that the inflow disturbances cause small-scale responses and large-scale responses upstream and downstream of the vortex shedding location, respectively. This difference in scale is possibly dictated by a variation in the shedding location since the amount of circulation in the vortex is dependent on this location. The inflow disturbances possibly cause a variation in the shedding location by manipulating the separation of the tip leakage flow from the endwall and consequently the flow's roll-up process. Even though this manipulation only perturbs the leakage flow in a small scale, the shedding mechanism of the tip leakage vortex amplifies the outcome.
机译:在配备有移动端壁系统的Virginia Tech线性级联风洞中,模拟了转子叶片尖端泄漏涡流与入流扰动之间的相互作用,例如在带罩船用推进器中遇到的相互作用。在叶片排的上游,使用以与叶片间隔相同的间隔附接到端壁的涡流发生器对来产生理想的周期性流入不稳定。在三个尖端间隙设置(1.7%c,3.3%c和5.7%c)下,通过四传感器热线测量的三分量平均速度和湍流分布研究了中心叶片通道下端壁附近的流动。除了时间平均数据外,还针对涡流发生器相对于叶片通道的螺距方向位置,对测量值进行了锁相分析。此外,叶片尖端处的表面压力分布是在从0.87%c到12.9%c的八个尖端间隙处获得的。压力-速度相关性的测量也通过壁运动进行,但没有流入干扰。在这项研究中获得的是对尖端泄漏涡旋初形成时的特征和结构的理解。尖端泄漏涡形成的机理似乎与尖端间隙设置无关。尖端泄漏涡流由涡流结构和靠近端壁的低河道动量流体区域组成。旋涡结构最初连接到产生它的叶片尖端。这种结构吸收了从叶尖以及从端壁边界层流出的循环流,并随着下游距离的增大而增强。由于端壁中的镜像部分地引起,涡旋结构开始横穿通道移动,从而导致其旋转强度降低,因为涡旋的横截面面积增加了,但增加了很少的循环。尖端间隙越大,涡旋结构停留在叶片尖端的时间越长,并且到达通道下游时结构越牢固。分阶段平均数据表明,流入扰动分别引起涡旋脱落位置上游和下游的小规模响应和大范围响应。由于旋涡中的循环量取决于该位置,因此这种尺寸差异可能由脱落位置的变化决定。流入扰动可能会通过操纵尖端泄漏流与端壁的分离以及由此导致的流的卷起过程而导致脱落位置的变化。即使此操作仅在小范围上扰动了泄漏流,但尖端泄漏涡流的脱落机制仍会放大结果。

著录项

  • 作者

    Intaratep, Nanyaporn.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 305 p.
  • 总页数 305
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号