首页> 外文学位 >Habitat modeling of river ecosystems: Multidimensional spatially explicit and dynamic habitat templates at scales relevant to fish.
【24h】

Habitat modeling of river ecosystems: Multidimensional spatially explicit and dynamic habitat templates at scales relevant to fish.

机译:河流生态系统的栖息地建模:与鱼类相关的尺度的多维空间显性和动态栖息地模板。

获取原文
获取原文并翻译 | 示例

摘要

A mechanistic approach of predicting habitat and growth for drift-feeding stream salmonids was developed. The approach was based on the cause-and-effect relationships of environmental variables, resource conditions, physiological attributes of the fish, and daily net energy intake (DNEI) (joules/day) coupled with multidimensional hydrodynamics modeling. The environmental variables and resource conditions used in the analysis were discharge, depth, velocity, diel fluctuating temperature, turbidity, day length, drift density, and drift size. The physiological variables included were daily maximum consumption, daily energy losses, fish size, swimming cost, optimum swimming speed, and maximum sustained swimming speed. DNEI was calculated by means of a daily energy balance using a drift-foraging model that included each of the variables.; The DNEI model predictions of high-energy habitat matched the observed habitat utilization for a wide size range of rainbow/redband trout ( Oncorhynchus mykiss spp.) in the Klamath River, California/Oregon, USA, and cutthroat trout (O. clarki) in St. Charles Creek, Idaho, USA. In addition, the DNEI foraging model accurately predicted the observed growth of fish in a hydro peaking section of the Klamath River.; The DNEI modeling showed that temperature, drift density, turbidity, and to a lesser extent, the velocity field adjacent to fish can have a large effect on the estimated habitat suitability. The effect of temperature, drift density, and turbidity (by inference) on total habitat was nearly as large as the effect of a wide range of river discharge (10 to 212 cms) on total habitat. In a specific application of the DNEI growth model to hydro peaking versus non-peaking scenarios in a reach of the Klamath River, the potential increase in drift density due to non-peaking had a large effect on modeled growth (229% increase). Two-dimensional hydrodynamics modeling results showed that given accurate topography, boundary conditions, and calibration, the models accurately represented the depth and velocity fields in natural river channels.; We show how the environmental variables, resource conditions, and fish sizes (ecological data layers) can be combined to predict drift-feeding DNEI habitat, growth, and, in general, aquatic habitat using multidimensional ecological templates (MET). We discuss some implications of the modeling approach and suggest that it has important application to habitat restoration planning, environmental impact assessments, and instream flow assessments.
机译:开发了一种机械方法来预测流食鲑鱼的栖息地和生长。该方法基于环境变量,资源条件,鱼的生理属性和每日净能量摄入量(DNEI)(焦耳/天)的因果关系以及多维流体力学建模。分析中使用的环境变量和资源条件为流量,深度,速度,狄尔波动温度,浊度,日长,漂移密度和漂移大小。生理变量包括每日最大消耗量,每日能量损失,鱼的大小,游泳成本,最佳游泳速度和最大持续游泳速度。 DNEI是通过使用包括每个变量的漂移-觅食模型通过每日能量平衡来计算的。 DNEI模型对高能生境的预测与美国加州/俄勒冈州克拉马斯河的宽范围虹鳟(Redcorband)和红带鳟(Oncorhynchus mykiss spp。)以及宽吻鳟(O. clarki)的观察到的栖息地利用相匹配。美国爱达荷州圣查尔斯溪。此外,DNEI觅食模型可准确预测在克拉马斯河水力峰段观测到的鱼类生长。 DNEI模型显示温度,漂移密度,浊度以及与鱼类相邻的速度场在较小程度上会对估计的栖息地适应性产生很大影响。温度,漂移密度和浊度(通过推论)对总生境的影响几乎与大范围河水排放(10至212 cms)对总生境的影响一样大。在将DNEI增长模型应用于克拉马斯河水域峰值和非峰值情景的特定应用中,由于非峰值导致的漂移密度潜在增加对模拟增长产生了较大影响(增加了229%)。二维流体动力学建模结果表明,给定正确的地形,边界条件和标定,这些模型可以准确地表示天然河道的深度和速度场。我们展示了如何使用多维生态模板(MET)结合环境变量,资源条件和鱼类大小(生态数据层)来预测DNEI的流食性生境,生长以及一般的水生生境。我们讨论了建模方法的一些含义,并建议该方法在栖息地恢复规划,环境影响评估和河川流量评估中具有重要的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号