首页> 外文学位 >Resource Management in Next Generation Wireless Networks: Optimization and Games.
【24h】

Resource Management in Next Generation Wireless Networks: Optimization and Games.

机译:下一代无线网络中的资源管理:优化和游戏。

获取原文
获取原文并翻译 | 示例

摘要

To attain the targeted data rates for next generation (5G) cellular networks, one effective approach is dense deployment of small cells, in addition to macro cells which provide wide coverage. Today's systems allocate fixed resources to a cell regardless of traffic conditions in other cells. In the inter-cell interference coordination (ICIC) scheme of current 4G networks, different resource blocks are assigned to cell-edge user equipments (UEs) from neighboring cells to mitigate inter-cell interference. However, access points cannot effectively use their neighbors' resources when there are no cell-edge UEs in the neighboring cells. Dynamic radio resource management (RRM) is crucial to the success of the heterogeneous networks due to much more pronounced traffic and interference variations in small cells.;Exploiting new licensed and unlicensed frequency bands is another promising 5G technique. Facing the challenge of providing sufficient network capacity for wireless data, the industry is currently debating how to take advantage of the hundreds of megahertz of unlicensed spectrum. As 4G wireless technology, Long Term Evolution (LTE) has benefits of high-efficiency and robust mobility in comparison with WiFi. One specific proposal being considered by the 3rd Generation Partnership Project (3GPP) is to retool and deploy LTE technologies in unlicensed bands below 6 GHz. Along with benefits, challenging issues, such as coordination among operators and coexistence among radio access technologies, need to be carefully addressed.;The first part of this thesis addresses resource management in dense small cells. In Chapter 2, we propose a framework for RRM organized according to two timescales, which includes 1) centralized RRM on a relatively slow timescale (seconds to minutes) corresponding to typical durations of user sessions, and 2) distributed RRM on a very fast timescale (milliseconds) corresponding to typical latency requirements. We treat UEs near each other with similar quality of service (QoS) requirements as a UE group and model their aggregate traffic using a single queue on a slow timescale. In reality, the service rate for one UE group depends on spectrum activities of other UE groups. The network becomes a system of interactive queues. The analysis of interactive queues is an open problem. To make progress, we propose an effective approximation of the average packet delay. The joint design of dual timescale allocation and user association is studied. An optimization problem to minimize average packet delay is formulated with consideration of (distributed) opportunistic scheduling on the faster timescale. Iterative algorithms are developed to solve the optimization problems efficiently for a small cluster of cells. Numerical results demonstrate advantages of the dual-timescale RRM framework.;Chapters 3 and 4 study the fundamental questions of whether and how the unlicensed spectrum can be shared by intrinsically strategic operators with dynamic traffic. First, we propose a static sharing scheme, which allows the operators to share the spectrum over a slow timescale and has a subgame-perfect Nash equilibrium. The question of how many operators will choose to enter the market is also addressed by considering an entry game. Several dynamic sharing schemes are then proposed, where borrowing/lending is allowed among operators. The efficiency of these dynamic schemes significantly outperforms that of static sharing, and the strategy profiles in these sharing schemes are also shown to be subgame-perfect Nash equilibria. Chapter 3 shows the existence of the subgame-perfect Nash equilibria when the future discount is sufficiently close to 1. Chapter 4 studies the efficient subgame-perfect Nash equilibria to maximize social welfare for general cases. Practical implication of the results to the deployment of LTE in unlicensed bands are discussed.;In Chapter 5, the coexistence issue between LTE in unlicensed spectrum (LTE-U) and other technologies via channel selection is discussed. A simple case with multiple LTE-U operators and one foreigner using a different technology is discussed here. In practice, the foreigner may be either strategic or nonstrategic. For different types of foreigners, the optimal strategy of LTE-U operators is discussed using game theoretic tools.;The study in Chapters 3, 4 and 5 is to provide a basis for reasoning of the deployment of LTE in unlicensed bands. The choice of the actual equilibrium allocation is likely to be determined by standard bodies (including the 3GPP and WiFi Alliance) as well as other major parties holding a stake in the outcome.
机译:为了获得下一代(5G)蜂窝网络的目标数据速率,一种有效的方法是,除了提供广泛覆盖的宏小区外,还要密集部署小型小区。当今的系统将固定资源分配给一个小区,而不管其他小区的业务状况如何。在当前4G网络的小区间干扰协调(ICIC)方案中,将不同的资源块从相邻小区分配给小区边缘用户设备(UE),以减轻小区间干扰。然而,当相邻小区中没有小区边缘UE时,接入点不能有效地使用其邻居的资源。动态无线电资源管理(RRM)由于小蜂窝中的流量和干扰变化更为明显而对于异构网络的成功至关重要。;开发新的许可和非许可频段是另一种有前途的5G技术。面对为无线数据提供足够的网络容量的挑战,该行业目前正在辩论如何利用数百兆赫兹的未许可频谱。作为4G无线技术,长期演进(LTE)与WiFi相比具有高效和鲁棒性的优势。第三代合作伙伴计划(3GPP)正在考虑的一项具体建议是,在低于6 GHz的非许可频段中重新部署和部署LTE技术。除了好处之外,还需要认真解决诸如运营商之间的协调以及无线电接入技术之间的共存之类的挑战性问题。本论文的第一部分解决了密集小型小区中的资源管理问题。在第2章中,我们提出了一个根据两个时间尺度组织的RRM框架,其中包括1)在相对慢的时间尺度(几秒到几分钟)对应于用户会话的典型持续时间的集中RRM,以及2)在非常快的时间尺度上的分布式RRM (毫秒)对应于典型的延迟要求。我们将具有相似服务质量(QoS)要求的彼此接近的UE视为UE组,并在较慢的时间尺度上使用单个队列对它们的聚合流量进行建模。实际上,一个UE组的服务速率取决于其他UE组的频谱活动。网络成为交互式队列系统。交互式队列的分析是一个开放的问题。为了取得进展,我们提出了平均分组延迟的有效近似值。研究了双时标分配和用户关联的联合设计。考虑到在更快的时间尺度上的(分布式)机会调度,提出了使平均分组延迟最小的优化问题。开发了迭代算法以有效地解决一小组小型单元的优化问题。数值结果证明了双时标RRM框架的优势。第3章和第4章研究基本问题,即具有动态业务量的内在战略运营商是否可以以及如何共享未许可频谱。首先,我们提出了一种静态共享方案,该方案允许运营商在较慢的时间范围内共享频谱,并且具有子博弈完美的纳什均衡。考虑进入游戏也解决了多少运营商会选择进入市场的问题。然后提出了几种动态共享方案,其中允许运营商之间进行借/借。这些动态方案的效率大大超过了静态共享的效率,并且这些共享方案中的策略配置文件也显示出亚博弈完美的纳什均衡。第三章显示了当未来折扣足够接近1时,亚博弈完美的纳什均衡的存在。第四章研究了有效的亚博弈完美的纳什均衡,以使一般情况下的社会福利最大化。讨论了结果对无执照频段中LTE部署的实际意义。在第5章中,讨论了无执照频谱中的LTE(LTE-U)与其他技术之间通过信道选择的共存问题。本文讨论了一个简单的案例,其中有多个LTE-U运营商和一个使用不同技术的外国人。实际上,外国人可以是战略性的或非战略性的。针对不同类型的外国人,使用博弈论工具讨论了LTE-U运营商的最佳策略。第三章,第四章和第五章的研究为推理在无执照频段中部署LTE提供了基础。实际平衡分配的选择可能由标准机构(包括3GPP和WiFi联盟)以及其他在结果中占多数的主要方来确定。

著录项

  • 作者

    Teng, Fei.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号