首页> 外文学位 >Structure and dynamics of the inner magnetosphere and their effects on radiation belt electrons.
【24h】

Structure and dynamics of the inner magnetosphere and their effects on radiation belt electrons.

机译:内部磁层的结构和动力学及其对辐射带电子的影响。

获取原文
获取原文并翻译 | 示例

摘要

The goals of this dissertation are: (1) to understand the physics describing the structure and dynamics of magnetic field configurations in Earth's inner magnetosphere; (2) to assess the performance of data-based and physics-based global magnetospheric models under various conditions; and (3) to quantify the responses of global magnetic and electric fields to solar wind variations, and ultimately their effects on radial transport of radiation belt electrons. The radiation belt charged particle environment, the relativistic electrons in particular, changes by orders of magnitude on a variety of time scales in a complicated fashion. In order to understand and model the dynamic behavior of radiation belt electrons, we first need global, realistic, self-consistent, and time-dependent magnetospheric models. Therefore, we compare state-of-the-art empirical Tsyganenko models and Lyon-Fedder-Mobarry (LFM) physics-based code predictions with geosynchronous measurements to assess their performance and quantify the field configurations and fluctuations in the inner magnetosphere. The Tsyganenko storm model best predicts the large-scale field magnitude for all geomagnetic conditions, but fails to reproduce small-scale wave fields. On the other hand, the LFM code reproduces both the field configurations and ultra-low-frequency (ULF) waves during non-storm intervals. Next, we simulate the dynamics of radiation belt electrons using global magnetic and electric fields from the LFM code, driven by idealized solar wind over a range of velocities. We follow the trajectories of electrons, starting at different local times and radii for the same first adiabatic invariant, to understand their transport and energization through collective wave-particle interactions. Finally, we quantify the ULF wave effects on radiation belt electrons by calculating the radial diffusion coefficients from the LFM simulation results. The derived coefficients as a function of solar wind velocity, of 10-4 to 1 day-1 in the outer electron belt, are comparable to observational results after normalizing for wave power. Using this method, we conclude that diffusive electron transport is well simulated for various solar wind conditions and geomagnetic activity levels, a significant step toward quantitative understanding of the complex, dynamical radiation belt environment.
机译:本文的目的是:(1)了解描述地球内部磁层中磁场结构的结构和动力学的物理学; (2)在各种条件下评估基于数据和基于物理学的全球磁层模型的性能; (3)量化整体磁场和电场对太阳风变化的响应,并最终量化它们对辐射带电子径向传输的影响。辐射带的带电粒子环境,尤其是相对论电子,在各种时间尺度上都以复杂的方式变化了几个数量级。为了理解并模拟辐射带电子的动态行为,我们首先需要全局,现实,自洽和时变的磁层模型。因此,我们将最先进的经验Tsyganenko模型和基于Lyon-Fedder-Mobarry(LFM)物理学的代码预测与地球同步测量进行比较,以评估其性能并量化内部磁层的场结构和涨落。 Tsyganenko风暴模型可以最好地预测所有地磁条件下的大尺度场强,但无法再现小尺度的波场。另一方面,LFM代码会在非风暴间隔内重现场配置和超低频(ULF)波。接下来,我们使用LFM代码中的全局磁场和电场来模拟辐射带电子的动力学,这些磁场和电场是由理想的太阳风在一定速度范围内驱动的。我们遵循电子的轨迹,从相同的第一个绝热不变量的不同本地时间和半径开始,以了解它们通过集体波粒相互作用而进行的传输和通电。最后,我们通过从LFM仿真结果计算径向扩散系数,来量化ULF波对辐射带电子的影响。在外部电子带中,作为太阳风速的函数得出的系数为10-4到1 day-1,与将波功率归一化后的观测结果相当。使用这种方法,我们得出结论,对于各种太阳风条件和地磁活动水平,可以很好地模拟扩散电子传输,这是朝着定量了解复杂的动态辐射带环境迈出的重要一步。

著录项

  • 作者

    Huang, Chia-Lin.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Physics Astronomy and Astrophysics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 天文学;
  • 关键词

  • 入库时间 2022-08-17 11:39:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号