首页> 外文学位 >Haptic Synthesis of Dynamically Deformable Materials.
【24h】

Haptic Synthesis of Dynamically Deformable Materials.

机译:动态变形材料的触觉合成。

获取原文
获取原文并翻译 | 示例

摘要

Haptic simulation of medical procedures is an active area of research in engineering and medicine. Analogous to flight simulators for pilots, surgery simulators can allow medical students and doctors to practice procedures in a risk free and well monitored virtual environment. The quality of interaction that a surgery simulator can generate is dependent upon many components. In this thesis, careful attention is paid to the haptic display of viscous effects.;A typical haptic interface for surgery simulation consists of a mechanical linkage driven by electric motors. These linkages are controlled with a computer using a discrete-time force update law that generates a prescribed force given the user's position in the medical virtual environment. It is clear from the literature that a haptic interface must have some level of physical dissipation to enable a passive rendering due to the inherent instability associated with time delayed systems. However, dissipation in typical haptic interfaces is a byproduct of their design, and is neither controllable nor easily identifiable. A prototype haptic interface is presented in this thesis that uses eddy current brakes to add high bandwidth programmable dissipation to an existing motor linkage. The new hardware has been optimized experimentally to maximize damping and minimize inertia given conventional machining and available material constraints.;A new paradigm in the control of haptic interfaces is time-domain passivity control. Passive systems are desirable in haptics because a passive system is globally stable, passivity theory applies to linear and nonlinear systems alike, and a user cannot extract energy from a passive system. Passivity controllers monitor the energy flow in the device and add virtual damping to remove any energy that violates the passivity constraint. Unfortunately, the amount of virtual damping available to a given device is limited by the physical dissipation that it exhibits. If the device is directly driven and light, such as the pantograph, the available virtual damping is insufficient to maintain the passivity constraint. The eddy current brakes allow programmable physical damping to be used in place of virtual damping which has been shown with experiments to improve the stable impedance range of a haptic interface.;It is clear from the literature that most tissues in a human body exhibit viscoelastic behavior. Simulation of viscoelastic objects requires that the velocity of interaction be known. Because typical haptic interfaces use digital encoders to sample position, the estimated velocity signal is noisy, delayed or both. Eddy current brakes are viscous actuators by nature, as they generate a resistive force proportional to the velocity. To take advantage of this fact, viscoelastic decomposition algorithms were developed that can output viscous components to the eddy current brakes and elastic components to the motors. This technique reduces or eliminates the use of a velocity estimation signal in the feedback loop which improves passivity, reduces motor saturation effects, and allows for a wider stable range of mechanical impedances than conventional haptic interfaces can achieve.;Viscous terms, defined here as terms that are dependent upon velocity, are typically computed 'using a discrete time backwards difference estimation of the velocity. It is well known that differentation has the tendency to amplify high frequency noise, and as a result, the backwards difference estimation generates considerable errors when applied to the quantized position readings from a digital encoder. Prior to this work, the only feasible method to improve velocity estimation was to use a variety of observation or filtering techniques, all of which inevitably add phase delay. In this thesis, the backwards difference operation was analyzed in detail. It was found that feedback viscosity simulation is very non-robust to noise, and oscillations exist in the presence of quantization noise regardless of the physical parameters of the plant.
机译:医学程序的触觉模拟是工程和医学研究的活跃领域。类似于飞行员的飞行模拟器,手术模拟器可以使医学生和医生在无风险且受到良好监控的虚拟环境中练习程序。手术模拟器可以产生的交互质量取决于许多因素。本文对粘性效应的触觉显示进行了认真的研究。手术模拟的典型触觉界面由电动机驱动的机械联动装置组成。这些链接由计算机使用离散时间力更新定律进行控制,该定律在给定用户在医学虚拟环境中的位置时会生成指定的力。从文献中可以清楚地看出,由于与时间延迟系统相关的固有不稳定性,触觉接口必须具有一定程度的物理耗散才能启用被动渲染。然而,典型的触觉界面中的耗散是其设计的副产品,既不可控也不容易识别。本文提出了一种原型触觉接口,该接口使用涡流制动器为现有的电动机连杆增加了高带宽可编程耗散。新硬件已经通过实验进行了优化,以在常规加工和可用材料限制下最大程度地降低阻尼并减小惯性。触觉界面控制的新范例是时域无源控制。无源系统在触觉中是理想的,因为无源系统是全局稳定的,无源性理论同样适用于线性和非线性系统,并且用户无法从无源系统中提取能量。无源控制器监视设备中的能量流,并添加虚拟阻尼以消除违反无源约束的任何能量。不幸的是,给定设备可用的虚拟阻尼量受到其所表现出的物理耗散的限制。如果直接驱动设备并放光(例如受电弓),则可用的虚拟阻尼不足以维持无源性约束。涡流制动器允许使用可编程的物理阻尼代替虚拟阻尼,虚拟阻尼已通过实验证明可以改善触觉界面的稳定阻抗范围。;从文献中可以清楚地看出,人体中的大多数组织都表现出粘弹性。粘弹性物体的模拟要求知道相互作用的速度。因为典型的触觉界面使用数字编码器来采样位置,所以估计的速度信号是有噪声的,延迟的或两者兼有。涡流制动器本质上是粘性致动器,因为它们会产生与速度成比例的阻力。为了利用这一事实,开发了粘弹性分解算法,该算法可以将粘性分量输出到涡流制动器,而将弹性分量输出到电动机。该技术减少或消除了在反馈环路中使用速度估计信号,从而提高了无源性,降低了电机的饱和效应,并提供了比传统触觉界面更广泛的稳定的机械阻抗范围。通常,使用速度的离散时间向后差分估计来计算依赖于速度的速度。众所周知,差分具有放大高频噪声的趋势,结果,当将后向差分估计应用于数字编码器的量化位置读数时,会产生相当大的误差。在进行这项工作之前,改善速度估计的唯一可行方法是使用各种观测或滤波技术,所有这些技术不可避免地会增加相位延迟。本文详细分析了向后差分运算。发现反馈粘度模拟对于噪声非常不鲁棒,并且在存在量化噪声的情况下都存在振荡,而与工厂的物理参数无关。

著录项

  • 作者

    Gosline, Andrew H.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Engineering Electronics and Electrical.;Engineering Mechanical.;Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号