首页> 外文学位 >Retroflection from slanted coastline: Modeling rings injection into the South Atlantic during glacials/interglacials.
【24h】

Retroflection from slanted coastline: Modeling rings injection into the South Atlantic during glacials/interglacials.

机译:从倾斜的海岸线进行反演:在冰期/间冰期期间,模拟环注入南大西洋。

获取原文
获取原文并翻译 | 示例

摘要

Recent proxies analysis suggest that, at the end of the last glacial, there was a significant increase in the injection of Agulhas rings into the South Atlantic (SA). This brought about a dramatic increase in the salt-influx (from the Indian Ocean) into the SA helping re-start the then-collapsed meridional overturning cell (MOC), leading to the glacial termination. Here, we propose a mechanism through which large variations in ring production take place.;To gain a preliminary understanding of the processes in question, we develop a nonlinear analytical model of retroflection from a slanted non-zonal coastline. In is known that the balance of long-shore momentum flux requires that the solution of retroflecting currents involves ring shedding on the western side. An important aspect of the ring dynamics is the ring intensity alpha (analogous to the Rossby number), which reaches its maximum value of unity when the upstream potential vorticity (PV) is zero. Friction leads to a slow-down and a decrease in alpha. The main difficulty is that the solution of the system of equations for conservation of mass and momentum of zonal currents leads to the conclusion that the ratio (&PHgr;) of the mass flux going into the rings and the total incoming mass flux is approximately 4alpha/(1+ 2alpha). This yields the "vorticity paradox"---only relatively weak rings (alpha≤1/2) could satisfy the necessary condition &PHgr;≤1. Physically, this means, for example, that the momentum-flux of zero PV currents upstream is so high that, no matter how many rings are produced and no matter what size they are, they cannot compensate for it. We show here that when the slant of coastline (gamma) exceeds merely 15°, &PHgr; does not reach unity regardless of the value of alpha. Namely, the paradox disappears even for small slants. Our slowly varying nonlinear solution does not only let us circumvent the paradox. It also gives a detailed description of the rings growth rate and the mass flux going into the rings as a function of time. Interestingly, for significant slants (gamma≥30°), the rings reach a terminal size corresponding to a balance between the beta-force and both the upstream and downstream momentum fluxes. This terminal size is unrelated to the ultimate detachment and westward drift due to beta.;The developed model enables us to obtain the nonlinear analytical solutions for eddy shedding, including the theoretical ranges of detached eddies radii, their propagation speeds, and their periods of detachment, as well as the average amount of mass flux going into the rings. Using the dependence of these aspects on the coastline slant, we show that there are restricted possibilities for ring detachment when the coast is oriented in the north--south direction. We define a critical coastline angle below which there is rings shedding and above which there is almost no shedding. In the case of the Agulhas region, the particular shape of the African continent implies that rings can be produced only when the retroflection occurs beyond a specific latitude where the angle is critical. During glaciation, the wind stress curl (WSC) vanished at a latitude lower than that of the critical angle, which prohibited the retroflection from producing rings. When the latitude at which the WSC vanishes migrated poleward towards its present day position, the corresponding coastline angle decreased below the critical angle and allowed for a vigorous production of rings.;Simple process-oriented numerical simulations (using the Bleck and Boudra model) are in good agreement with our results and enable us to affirm that, during the glacials, the behavior of the Agulhas Current (AC) was similar to that of the modern East Australian Current (EAC), for which the coastline slant is supercritical.
机译:最近的代理分析表明,在最后一次冰川期结束时,向南部大西洋(SA)注入Agulhas环的数量显着增加。这导致从印度洋流入南美洲的盐大量涌入,从而帮助重新启动了当时坍塌的子午翻转单元(MOC),从而导致了冰川的终结。在这里,我们提出了一种机制,通过这种机制,环的生产将发生大的变化。;为了对所讨论的过程有一个初步的了解,我们开发了一个倾斜的非区域海岸线逆向反射的非线性分析模型。众所周知,近海动量通量的平衡需要逆向潮流的解决方案包括在西侧脱落环。环动力学的一个重要方面是环强度α(类似于Rossby数),当上游势涡度(PV)为零时,其强度达到最大值。摩擦会导致减慢速度并降低alpha值。主要困难在于,方程式系统的质量守恒和区域流动量方程组的解决方案得出的结论是,进入环的质量通量与总进入的质量通量之比(&PHgr;)约为4alpha / (1+ 2alpha)。这产生了“涡度悖论”-只有相对较弱的环(α≤1/ 2)才能满足必要条件&PHgr;≤1。从物理上讲,这意味着,例如,上游的零PV电流的动量通量是如此之高,以至于无论产生多少环,无论环的大小如何,都无法对其进行补偿。我们在这里表明,当海岸线(γ)的斜度仅超过15°时,&PHgr;不管alpha值如何,都不会达到统一。即,即使是小的倾向,矛盾也消失了。我们缓慢变化的非线性解决方案不仅让我们规避了这一悖论。它还详细描述了环的生长速度和进入环的质量通量随时间的变化。有趣的是,对于较大的倾斜度(伽玛≥30°),环的末端尺寸对应于β力与上游和下游动量通量之间的平衡。该终端的大小与由于β引起的最终分离和向西漂移无关,以及进入环的平均质量通量。利用这些方面对海岸线倾斜的依赖性,我们表明,当海岸沿南北方向定向时,环脱离的可能性有限。我们定义了一个关键的海岸线角度,在该角度以下有环脱落,在该角度以上几乎没有脱落。就阿古拉斯(Agulhas)地区而言,非洲大陆的特殊形状意味着只有在逆转超出特定角度的关键纬度时才可以产生环。在冰期期间,风应力卷曲(WSC)在低于临界角的纬度处消失,这阻止了反折作用产生环。当WSC消失的纬度向当前位置极移时,相应的海岸线角减小到临界角以下,并有力地产生环。;简单的面向过程的数值模拟(使用Bleck和Boudra模型)是与我们的结果很好地吻合,使我们能够确认,在冰川期间,阿古拉斯海流(AC)的行为与现代东澳大利亚海流(EAC)的行为类似,因为海岸线倾斜是超临界的。

著录项

  • 作者

    Zharkov, Volodymyr.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Physical Oceanography.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 91 p.
  • 总页数 91
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号