首页> 外文学位 >A discrete event based stochastic simulation approach for studying the dynamics of biological networks.
【24h】

A discrete event based stochastic simulation approach for studying the dynamics of biological networks.

机译:基于离散事件的随机模拟方法,用于研究生物网络的动力学。

获取原文
获取原文并翻译 | 示例

摘要

With increasing availability of data resources on the molecular parts of a living cell, biologists are focussing on holistic understanding of cellular mechanisms and the emergent dynamics arising out of their complex interactions. Comprehending the fine-grained signal specificity, gene regulation and feedback mechanisms of molecular interactions at a network level forms a central theme of systems biology.;With the speed and sophistication of computational methods, in silico modeling and simulation techniques have become a powerful tool for biologists challenged with understanding the system complexity of biological networks. Numerical simulation of classical chemical kinetics (CCK), agent-based simulations of biological processes, and linear optimization models of metabolic networks, have been applied to the study of cellular behaviors with varying degrees of success. The spatio-temporal scales of cellular processes, coupled with the knowledge gap and complexity of biological networks limit the application of existing computational techniques.;In this dissertation, we present a network-centric modeling and simulation approach to systematically study the stochastic dynamics of cellular processes at a molecular level. The central theme of our approach revolves around abstracting a complex biological process as a collection of discrete, interacting molecular entities driven in time by a set of discrete biological events (bioEvents). We develop the discrete-event based simulation engine, called iSimBioSys, together with an integrated database of biological pathways, which captures the temporal dynamics of the molecules through stochastic interactions of different bioEvents..;With an illustrative case study of signal transduction networks in bacterial cells, we highlight the efficiency of a discrete event based approach in capturing high-level system dynamics of a biological process, particularly in reproducing the switching effect of the PhoPQ pathway in Salmonella cells as reported in experimental work. Next, we build a detailed stochastic model for the fundamental process of gene expression in prokaryotic cells and study the biological events of transcription and translation using the proposed simulation framework. Our results identify the role of transcriptional and translation machinery in controlling the burstiness of protein generation. We extend our simulator to incorporate a hybrid algorithm which combines stochastic models of signalling and regulatory events with a flow-based model for metabolic networks. In order to validate the efficacy of the hybrid simulation approach, we develop an integrated database of signaling and metabolic networks in the bacterial cell Escherechia Coli. The hybrid simulation recreates experimentally observed regulation of metabolic flux distributions in the network while providing new insights into the mechanism of regulation.
机译:随着活细胞分子部分数据资源的可用性不断提高,生物学家正在集中精力全面了解细胞机制以及由于它们复杂的相互作用而产生的动态变化。在网络层面理解细粒度的信号特异性,基因调控和分子相互作用的反馈机制,构成了系统生物学的中心主题。随着计算方法的迅速和复杂化,计算机模拟和仿真技术已成为一种强大的工具,可用于生物学家对理解生物网络的系统复杂性提出了挑战。经典化学动力学(CCK)的数值模拟,生物过程的基于代理的模拟以及代谢网络的线性优化模型已被用于研究具有不同成功程度的细胞行为。细胞过程的时空尺度,再加上生物网络的知识缺口和复杂性,限制了现有计算技术的应用。本论文提出了一种以网络为中心的建模与仿真方法,系统地研究了细胞的随机动力学。在分子水平上的过程。我们方法的中心主题围绕抽象复杂的生物过程,该过程是由一组离散的生物事件(bioEvents)在时间上驱动的离散的,相互作用的分子实体的集合。我们开发了基于离散事件的仿真引擎,称为iSimBioSys,以及一个集成的生物途径数据库,该数据库通过不同bioEvent的随机相互作用来捕获分子的时间动态。.通过细菌中信号转导网络的说明性案例研究细胞,我们强调了基于离散事件的方法在捕获生物过程的高水平系统动力学方面的效率,特别是在沙门氏菌细胞中重现PhoPQ途径的转换效应方面,如实验工作中所述。接下来,我们为原核细胞中基因表达的基本过程建立了详细的随机模型,并使用拟议的模拟框架研究了转录和翻译的生物学事件。我们的研究结果确定了转录和翻译机制在控制蛋白质生成过程中的作用。我们扩展了我们的模拟器,以纳入一种混合算法,该算法将信号和调节事件的随机模型与基于代谢网络的基于流量的模型相结合。为了验证混合仿真方法的功效,我们开发了细菌细胞大肠埃希氏菌中信号和代谢网络的集成数据库。混合仿真重新创建了网络中代谢通量分布的实验观察调节,同时为调节机理提供了新见解。

著录项

  • 作者

    Ghosh, Samik.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Computer Science.;Biology Bioinformatics.;Engineering System Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号