首页> 外文学位 >Origins and evolution of three multidomain gene families concerned with basic cellular and developmental processes in eukaryotes.
【24h】

Origins and evolution of three multidomain gene families concerned with basic cellular and developmental processes in eukaryotes.

机译:与真核生物中基本细胞和发育过程有关的三个多域基因家族的起源和进化。

获取原文
获取原文并翻译 | 示例

摘要

Duplicate genes are the principal substrates for innovative tinkering during evolution. In eukaryotes a special case of tinkering is the acquisition of domain(s) after gene duplication. Domain acquisition results in the formation of multigene families that code for multidomain proteins. These families often diverge extensively, acquire new functions, and follow different modes of evolution. To understand the mode of evolution of such families, I studied the evolutionary relationships of three different gene families: the FORMIN, the BTK/TEC, and the DANGER.;FORMIN proteins promote the assembly and elongation of actin filaments. My study showed that the FORMIN gene apparently originated at the advent of eukaryotes and probably was duplicated before the divergence of plants and animals. The FORMIN gene family followed the birth-and-death model of evolution and experienced multiple lineage-specific genomic rearrangements which led to acquisition of various different domains. On the basis of their domain organization, FORMIN proteins can be classified into three different types, A, B, and C. Type A FORMIN proteins have the typical Formin Homology 2 domain but lack any other known domain in their N- and C-terminal regions. Type B FORMIN proteins have N-and C-terminal domains, which interact in an intramolecular manner and inactivate the FORMIN function. Type C FORMIN proteins have various non-homologous N- and/or C-terminal domains. Type B FORMIN appeared in the common ancestor of unikonts. The presence of type B FORMIN genes in two parasitic bikonts is explained by either parallel evolution or horizontal gene transfer. This study provides insights into the diversification process of a eukaryote-specific regulator of the cytoskeleton. The lineage-specific diversification of FORMIN genes probably points to unique adaptations.;The BTK/TEC genes code for multidomain proteins that phosphorylate tyrosine residues. In mammals the BTK/TEC proteins play a key role in signal transduction in cells involved in adaptive immunity. My study showed that the BTK/TEC gene appeared before the divergence of animals and choanoflagellates. This gene was duplicated at least three times before the emergence of bony fish. In mammals the N- and C-terminal domains of these kinases---PH and SH1 respectively---are conserved. In contrast, the SH3 and SH2 domains and their flanking linker sequences (denoted as the SSL region) are highly diverged. Because the SSL region of paralogous BTK/TEC proteins has not differentiated with respect to its protein ligands, I hypothesized that this region binds to lipids and has differentiated with respect to this function. I determined that the SSL region has the capacity to bind to lipids. I also verified the functional differentiation hypothesis by showing that the SSL region of paralogous BTK/TEC genes has different lipid-binding profiles. Natural mutations in the SSL region of the BTK gene, which cause a hereditary immunodeficiency in mice and humans, alter the lipid-binding profile of the BTK protein. My study revealed a new function for the BTK/TEC kinases. It also suggested a link between the lipid-binding function and the regulation/function of B-cells.;The DANGER gene family is a highly divergent multigene family that appeared before the origin of animals. Early during animal evolution the DANGER gene duplicated multiple times and diversified extensively. Protostomes lost many DANGER genes, whereas deuterostomes kept them and further increased their numbers. The DANGER proteins are probably involved in cell development and differentiation. DANGER proteins are comprised of micro-domains which show different levels of sequence divergence. The N-terminal micro-domain was probably acquired by exon shuffling and enabled some DANGER proteins to function in different cellular compartments or to be secreted. Other mechanisms of sequence divergence of DANGER proteins include amino acid replacement, intron gain/and loss, and recombination. v
机译:重复的基因是进化过程中创新修补的主要底物。在真核生物中,修补的一种特殊情况是基因复制后获得结构域。域获取导致编码多域蛋白的多基因家族的形成。这些家庭经常大相径庭,获得新的功能,并遵循不同的进化模式。为了了解此类家族的进化模式,我研究了三种不同基因家族的进化关系:FORMIN,BTK / TEC和DANGER。FORMIN蛋白促进肌动蛋白丝的组装和伸长。我的研究表明,FORMIN基因显然起源于真核生物的出现,并且可能在动植物分化之前被复制了。 FORMIN基因家族遵循进化的生死模型,并且经历了多个谱系特异性的基因组重排,从而导致获得了各种不同的域。根据其域结构,FORMIN蛋白可以分为三种不同的类型:A,B和C。A型FORMIN蛋白具有典型的Formin Homology 2域,但在其N端和C端缺少任何其他已知域地区。 B型FORMIN蛋白具有N端和C端结构域,它们以分子内方式相互作用并使FORMIN功能失活。 C型FORMIN蛋白具有各种非同源的N和/或C末端结构域。 B型FORMIN出现在unikonts的共同祖先中。通过平行进化或水平基因转移可以解释两个寄生bikonts中B型FORMIN基因的存在。这项研究提供了真核生物细胞骨架特定调节子的多样化过程的见解。 FORMIN基因的谱系特异性多样性可能指向独特的适应性。BTK / TEC基因编码磷酸化酪氨酸残基的多域蛋白。在哺乳动物中,BTK / TEC蛋白在参与适应性免疫的细胞中的信号转导中起关键作用。我的研究表明,BTK / TEC基因出现在动物和鞭毛虫分化之前。在骨鱼出现之前,该基因至少复制了3次。在哺乳动物中,这些激酶的N-和C-末端结构域-分别是PH和SH1-是保守的。相反,SH3和SH2域及其侧翼连接子序列(表示为SSL区域)差异很大。由于旁系BTK / TEC蛋白的SSL区域在其蛋白质配体方面尚未分化,因此我推测该区域与脂质结合,并且在此功能方面已分化。我确定SSL区域具有结合脂质的能力。我还通过证明同源BTK / TEC基因的SSL区域具有不同的脂质结合特征来验证功能分化假说。 BTK基因SSL区域的自然突变会导致小鼠和人类的遗传性免疫缺陷,从而改变BTK蛋白的脂质结合特性。我的研究揭示了BTK / TEC激酶的新功能。这也表明脂质结合功能与B细胞的调节/功能之间存在联系。DANGER基因家族是一个高度分化的多基因家族,出现在动物起源之前。在动物进化的早期,DANGER基因重复了多次并广泛分布。原虫失去了许多DANGER基因,而氘化基因组保留了它们,并进一步增加了它们的数量。 DANGER蛋白可能与细胞发育和分化有关。 DANGER蛋白由微结构域组成,这些结构域显示出不同水平的序列差异。 N末端微区可能是通过外显子改组获得的,并使某些DANGER蛋白在不同的细胞区室中起作用或被分泌。 DANGER蛋白序列差异的其他机制包括氨基酸置换,内含子增/减和重组。 v

著录项

  • 作者

    Chalkia, Dimitra.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Biology Molecular.;Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 258 p.
  • 总页数 258
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号