首页> 外文学位 >Biomechanics of non-steady locomotion: Bone loading, turning mechanics and maneuvering performance in goats.
【24h】

Biomechanics of non-steady locomotion: Bone loading, turning mechanics and maneuvering performance in goats.

机译:非平稳运动的生物力学:山羊的骨骼负载,转向力学和操纵性能。

获取原文
获取原文并翻译 | 示例

摘要

The ability of animals to maneuver in their environment plays an important role in their survival, especially during predator-prey interactions, and thus factors in to the musculoskeletal design of locomotor systems. Though much previous work has focused on steady-state locomotion, non-steady behaviors that animals perform may carry even more selective importance. The goal of this dissertation was to examine the underlying mechanics of a variety of non-steady locomotor behaviors performed by a cursorial quadruped species in order to provide insight into the relationships between musculoskeletal design and locomotor performance. Looking first at the structural elements of the limbs, I measured in vivo bone strain patterns in two forelimb bones of goats to examine the effects of bone curvature on loading predictability under steady versus more natural outdoor conditions. I found that the curved radius showed less variability in strain orientations compared to the straighter metacarpus, but strains were still more variable during outdoor compared to treadmill locomotion. To investigate how upright quadrupeds maintain dynamic stability during high-speed turning, I analyzed stride-averaged ground reaction forces (GRFs) in relation to center of mass (COM) position, finding that goats closely aligned the net GRF with their virtual leg (the vector from center of pressure of GRF to the COM), similar to how humans riding on bicycles achieve balance by leaning into the turn. To address how each limb contributes to the overall turning dynamics, I analyzed linear and rotational impulses produced by individual limbs to deflect the COM heading and reorient the body in roll, pitch and yaw. Outside limbs produced greater turning impulses than inside limbs, as predicted by a simple static model based on limb and body geometry during turning. Finally, I assessed the effect of substrate traction on maneuvering performance using a novel metric of maneuverability. I found that dodging performance is three times greater on a natural grass surface compared to the indoor runway, despite the high friction of the runway surface. Non-steady maneuvers are inherently challenging to study, but they are nonetheless important for furthering our understanding of the design of locomotor systems.
机译:动物在其环境中机动的能力在其生存中起着重要作用,尤其是在捕食者与猎物相互作用期间,因此成为运动系统的肌肉骨骼设计的因素。尽管以前的许多工作都集中在稳态运动上,但是动物所表现出的非稳态行为可能具有更大的选择性。本文的目的是研究由四足动物游击的四足动物进行的各种非稳态运动行为的内在机理,以便深入了解骨骼肌肉设计与运动性能之间的关系。首先看一下肢体的结构元素,我测量了山羊的两个前肢骨骼的体内骨骼应变模式,以研究骨骼曲率对稳定和更自然的室外条件下负荷可预测性的影响。我发现弯曲的半径与直的掌骨相比,应变方向的变异性较小,但是与跑步机的运动相比,在室外,应变的变异性更大。为了研究直立四足动物如何在高速转弯过程中保持动态稳定性,我分析了与质心(COM)位置相关的步幅平均地面反作用力(GRF),发现山羊将净GRF与其虚拟腿部(从GRF压力中心到COM的向量),类似于骑自行车的人通过转弯时达到平衡的方式。为了说明每个肢体如何对整体转弯动力学做出贡献,我分析了各个肢体产生的线性和旋转冲动,以偏转COM航向并使身体在侧倾,俯仰和偏航中重新定向。一个简单的基于四肢和身体几何形状的静态模型预测,四肢外侧产生的旋转冲动要比四肢内侧更大。最后,我使用一种新的机动性指标评估了基材牵引力对机动性能的影响。我发现,尽管跑道表面有很高的摩擦力,但天然草皮表面的躲避性能却比室内跑道高三倍。非稳定机动本质上是一项挑战性研究,但对于增进我们对运动系统设计的理解而言,它们仍然很重要。

著录项

  • 作者

    Moreno, Carlos Arturo.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Biophysics Biomechanics.;Biology Physiology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号