首页> 外文学位 >The influence of Pseudomonas aeruginosa biofilm microenvironments on metal -microbe interactions.
【24h】

The influence of Pseudomonas aeruginosa biofilm microenvironments on metal -microbe interactions.

机译:铜绿假单胞菌生物膜微环境对金属-微生物相互作用的影响。

获取原文
获取原文并翻译 | 示例

摘要

It is only over the past two decades that microbes have been recognized as important mediators of Earth's geochemistry. Similarly, the recognition of 'biofilms' as the predominant mode of bacterial growth has only been appreciated for the same amount of time. Because these two fields are in their infancy, the relationship between the two is poorly understood. Biofilm microbiology has been extensively characterized, however the interplay between chemically driven and microbiologically-mediated processes is a complicating factor in understanding these communities and the metal interactions that occur within their confines. A better understanding of so-called biofilm 'microenvironments' (conditions that differ from the surrounding phase) is required as they have been implicated in the complexity of metal interactions. This research investigates biofilm microenvironments and their influence on geomicrobiological phenomena.;Initially, confocal microscopy was used to characterize Pseudomonas aeruginosa biofilm development using a flow-cell system. Once biofilms matured, multiple fluorophores were applied which revealed that fully mature biofilms are oxygen-saturated throughout, but feature remarkable pH changes (∼2 units) over micron-sized areas. Physiological probes also revealed that clusters of metabolically inactive cells are strewn throughout the community. Cryo-electron microscopy was then used to map the spatial organization of cells and their exopolymers (EPS), which revealed an extraordinary complexity at both the cellular and extracellular levels. These microenvironments were expected to have an impact on the geochemistry of bacterial communities. Accordingly, acid/base titrations and equilibrium dialysis were used to elucidate how a shift in environmental chemistry influences the metal sorption capacity of the bacterial surface. This revealed that ambient growth conditions can influence surface hydrophobicity and thus metal sorption behaviour. The same methods were used to analyze the metal reactivity of EPS with and without extracellular DNA (eDNA), which implicated this macromolecule as a major contributor to metal sorption capacity of the biofilm matrix. Finally, because certain minerals form only under discrete geochemical conditions, the production of fine-grained minerals was analyzed by electron microscopy and synchrotron radiation to determine that chemical microenvironments encourage extracellular mineral formation. These studies emphasize the complexity of microbial communities, and the influence of these systems on geochemical processes in nature.
机译:仅在过去的二十年中,微生物才被认为是地球地球化学的重要媒介。类似地,仅在相同的时间内才认识到“生物膜”是细菌生长的主要模式。由于这两个领域尚处于起步阶段,因此对两者之间的关系了解得很少。生物膜微生物学已被广泛地表征,但是化学驱动和微生物介导的过程之间的相互作用是理解这些群落和在其范围内发生的金属相互作用的复杂因素。由于它们已经牵涉到金属相互作用的复杂性,因此需要对所谓的生物膜“微环境”(条件不同于周围相)有更好的了解。这项研究调查了生物膜微环境及其对地球微生物现象的影响。最初,使用共聚焦显微镜通过流池系统表征铜绿假单胞菌生物膜的发育。一旦生物膜成熟,将应用多个荧光团,这些荧光团表明完全成熟的生物膜在整个过程中都是氧饱和的,但在微米级区域具有显着的pH变化(约2个单位)。生理探针还显示,代谢不活跃的细胞簇遍布整个社区。然后使用低温电子显微镜绘制细胞及其外聚合物(EPS)的空间结构图,这揭示了细胞和细胞外水平的非凡复杂性。预计这些微环境会对细菌群落的地球化学产生影响。因此,使用酸/碱滴定法和平衡渗析法来阐明环境化学的变化如何影响细菌表面的金属吸附能力。这表明环境生长条件会影响表面疏水性,从而影响金属的吸附行为。使用相同的方法来分析有或没有细胞外DNA(eDNA)的EPS的金属反应性,这暗示该大分子是生物膜基质对金属吸附能力的主要贡献者。最后,由于某些矿物仅在离散的地球化学条件下形成,因此通过电子显微镜和同步加速器辐射分析了细粒矿物的产生,以确定化学微环境促进了细胞外矿物的形成。这些研究强调了微生物群落的复杂性,以及这些系统对自然地球化学过程的影响。

著录项

  • 作者

    Hunter, Ryan Coulson.;

  • 作者单位

    University of Guelph (Canada).;

  • 授予单位 University of Guelph (Canada).;
  • 学科 Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 261 p.
  • 总页数 261
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号