首页> 外文学位 >Conversion of propane to propylene in a proton-conducting fuel cell.
【24h】

Conversion of propane to propylene in a proton-conducting fuel cell.

机译:在质子传导燃料电池中丙烷转化为丙烯。

获取原文
获取原文并翻译 | 示例

摘要

Using proton-conducting fuel cells for propane dehydrogenation to produce propylene is a novel process having many interesting characteristics, which combines the continuous chemical process to produce value-added propylene with electrical power generation. Although a lot of efforts have been made to demonstrate this process experimentally, no success has been achieved because of challenges in finding suitable proton-conducting electrolytes and compatible electrodes operating at intermediate temperatures (800°C). In this thesis, the feasibility of conversion of propane to propylene in a proton-conducting fuel cell was studied by developing suitable fuel cell components.;LiNaSO4 and the perovskite type of oxide, Y-doped BaCeO 3, was investigated for use as proton conducting electrolyte in the fuel cells. Thermodynamic analysis and experimental results indicated LiNaSO 4 was not stable in the fuel cell for propane dehydrogenation and the proton conductivity of LiNaSO4 only accounts for 5-10% of total ion conductivity. Y-doped BaCeO3 presents high proton conductivity and good chemical stability over 120 h tests coupled with suitable fuel cell set-up design. Thus, the feasibility of conversion of propane to propylene in a fuel cell based on this perovskite oxide with platinum as anode and cathode catalysts was investigated. The feasibility was proven with high product selectivity to propylene and good fuel cell performances. It was also showed that the electrochemical reaction of propane dehydrogenation was in competition with other side reactions caused by the gas species (H2, C2H 6, C2H4, etc.), which were the products of non-electrochemical reactions (e.g. thermal cracking) in the anode chamber. The hydrogen oxidation reaction was a predominant side electrochemical reaction.;Chromium (III) oxide synthesized by sol-gel method showed high activity for electrochemical propane dehydrogenation, and the maximum power density of about 110 mW/cm2 was achieved at 700°C as well as propylene selectivity up to 95%.;Carbon deposition during the process of propane dehydrogenation in the fuel cell was a problem, as the carbon poisoned the anode catalysts leading to deactivation of anode catalysts and deterioration of the product distribution. Compared to open circuit conditions, carbon deposition can be dramatically reduced with a local electrical field on the anode catalyst under the current flow conditions.
机译:使用传导质子的燃料电池进行丙烷脱氢生产丙烯是一种具有许多有趣特性的新颖方法,该方法将连续化学过程与具有发电能力的增值丙烯相结合。尽管已经进行了许多努力来通过实验证明该方法,但是由于在寻找合适的质子传导电解质和在中等温度(<800°C)下工作的兼容电极方面存在挑战,因此尚未获得成功。通过开发合适的燃料电池组件,研究了在质子传导燃料电池中丙烷转化为丙烯的可行性。研究了LiNaSO4和钙钛矿型氧化物Y掺杂BaCeO 3用作质子传导的方法。燃料电池中的电解质。热力学分析和实验结果表明,LiNaSO 4在丙烷脱氢的燃料电池中不稳定,LiNaSO4的质子传导率仅占总离子传导率的5-10%。掺Y的BaCeO3在120小时的测试中表现出高质子传导性和良好的化学稳定性,并具有合适的燃料电池设置设计。因此,研究了在以铂为阳极和阴极催化剂的钙钛矿氧化物为基础的燃料电池中丙烷转化为丙烯的可行性。通过对丙烯的高产品选择性和良好的燃料电池性能证明了可行性。还表明,丙烷脱氢的电化学反应与由气体种类(H2,C2H 6,C2H4等)引起的其他副反应竞争,而气体副产物是非电化学反应(例如热裂解)的产物。阳极室。氢氧化反应是主要的副反应;溶胶-凝胶法合成的氧化铬(III)具有较高的电化学丙烷脱氢活性,在700°C时也能达到约110 mW / cm2的最大功率密度由于丙烯的选择性高达95%。在燃料电池中,丙烷脱氢过程中的碳沉积是一个问题,因为碳使阳极催化剂中毒,导致阳极催化剂失活和产物分布变差。与开路条件相比,在电流条件下,阳极催化剂上的局部电场可大大减少碳沉积。

著录项

  • 作者

    Feng, Yu.;

  • 作者单位

    University of Alberta (Canada).;

  • 授予单位 University of Alberta (Canada).;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号