首页> 外文学位 >Hamilton decompositions of 6-regular Abelian Cayley graphs.
【24h】

Hamilton decompositions of 6-regular Abelian Cayley graphs.

机译:6正则Abelian Cayley图的Hamilton分解。

获取原文
获取原文并翻译 | 示例

摘要

In 1969, Lovasz asked whether every connected, vertex-transitive graph has a Hamilton path. This question has generated a considerable amount of interest, yet remains vastly open. To date, there exist no known connected, vertex-transitive graph that does not possess a Hamilton path. For the Cayley graphs, a subclass of vertex-transitive graphs, the following conjecture was made:;Weak Lovasz Conjecture: Every nontrivial, finite, connected Cayley graph is hamiltonian.;The Chen-Quimpo Theorem proves that Cayley graphs on abelian groups flourish with Hamilton cycles, thus prompting Alspach to make the following conjecture:;Alspach Conjecture: Every 2k-regular, connected Cayley graph on a finite abelian group has a Hamilton decomposition.;Alspach's conjecture is true for k = 1 and 2, but even the case k = 3 is still open. It is this case that this thesis addresses.;Chapters 1--3 give introductory material and past work on the conjecture. Chapter 3 investigates the relationship between 6-regular Cayley graphs and associated quotient graphs. A proof of Alspach's conjecture is given for the odd order case when k = 3. Chapter 4 provides a proof of the conjecture for even order graphs with 3-element connection sets that have an element generating a subgroup of index 2, and having a linear dependency among the other generators.;Chapter 5 shows that if Gamma = CAY(A, {s1, s2, s3}) is a connected, 6-regular, abelian Cayley graph of even order, and for some 1 ≤ i ≤ 3, Delta i = CAY (A/⟨s i⟩, { sj1,sj2 }) is 4-regular, and Deltai ≃ / CAY( Z3 , {1, 1}), then Gamma has a Hamilton decomposition. Alternatively stated, if Gamma = CAY(A, S) is a connected, 6-regular, abelian Cayley graph of even order, then Gamma has a Hamilton decomposition if S has no involutions, and for some s ∈ S, CAY(A/⟨ s⟩, S¯) is 4-regular, and of order at least 4.;Finally, the Appendices give computational data resulting from C and MAGMA programs used to generate Hamilton decompositions of certain non-isomorphic Cayley graphs on low order abelian groups.
机译:1969年,洛瓦兹(Lovasz)询问每个连通的,顶点传递图是否都具有汉密尔顿路径。这个问题引起了相当大的兴趣,但仍然悬而未决。迄今为止,尚不存在不具有汉密尔顿路径的已知连通顶点可传递图。对于Cayley图(顶点传递图的子类),做出了以下猜想:弱Lovasz猜想:每个非平凡,有限的,连通的Cayley图都是哈密尔顿图; Chen-Quimpo定理证明,阿贝尔群上的Cayley图随着哈密​​尔顿循环,从而促使阿尔斯帕奇做出以下猜想:阿尔斯帕奇猜想:有限阿贝尔群上的每个2k正则连通Cayley图都有哈密顿分解;阿尔斯帕奇猜想在k = 1和2时是正确的。 k = 3仍然打开。本文正是针对这种情况。第1--3章给出了介绍性材料和有关猜想的过去的工作。第3章研究6正则Cayley图与相关商图之间的关系。当k = 3时,给出了奇数阶情况下Alspach猜想的证明。第4章提供了具有3个元素的连接集的偶数阶图的猜想的证明,其中3个元素的连接集具有一个元素生成索引2的子组,并且具有线性第五章表明,如果Gamma = CAY(A,{s1,s2,s3})是偶数阶的连通的6规则阿贝尔Cayley图,并且对于1≤i≤3, Delta i = CAY(A / 〈si〉,{sj1,sj2})为4正则,而Deltai≃ / CAY(Z3,{1,1}),则Gamma具有汉密尔顿分解。换句话说,如果Gamma = CAY(A,S)是偶数阶的连接的六正则阿贝尔Cayley图,则在S没有对合的情况下,Gamma具有汉密尔顿分解,对于某些s∈S,CAY(A / 〈s〉,S′)为4正则,阶次至少为4;最后,附录给出了由C和MAGMA程序得到的计算数据,这些程序用于在低阶阿贝尔群上生成某些非同构Cayley图的汉密尔顿分解。

著录项

  • 作者

    Westlund, Erik E.;

  • 作者单位

    Michigan Technological University.;

  • 授予单位 Michigan Technological University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号