首页> 外文学位 >Development of self-assembled zinc oxide nanostructures in diblock copolymers on large area silicon wafers and gas sensor applications.
【24h】

Development of self-assembled zinc oxide nanostructures in diblock copolymers on large area silicon wafers and gas sensor applications.

机译:在大面积硅片上的二嵌段共聚物中自组装氧化锌纳米结构的发展以及气体传感器的应用。

获取原文
获取原文并翻译 | 示例

摘要

ZnO nanoparticles with improved optical properties and increased surface areas have the potential for advanced optoelectronic, gas sensor and biosensor applications. In order to exploit these unique properties of ZnO nanoparticles for the realization of nanoscale devices, we developed novel techniques for the self-assembly and functionalization of ZnO nanoparticles through diblock copolymers on large area (100)Si surfaces. These novel techniques allowed us to subsequently develop the first ZnO nanoparticle based device. Thus, a novel ZnO-nanocomposite/Si n-p heterojunction diode and a high performance hydrogen gas nanosensor have been developed, for the first time.;The thesis presents the novel technique developed for the self-assembly of ZnO nanostructures with spherical morphology through diblock copolymers on large area Si substrates. Correlation between the physical parameters of the nanoparticles and the copolymers was evaluated from AFM studies. Control of the nanoparticle size and density was achieved by varying copolymer block lengths. The largest nanoparticles had average sizes of 250 nm and densities of 1x107cm-2 while the smallest nanoparticles had average sizes of 20nm and densities of 1x101010cM -2. XRD studies showed that the wurtzite crystal structured nanoparticles assumed the same orientation (100) as the Si substrate, indicating a pseudo-epitaxial nanostructure. Room temperature photoluminescence studies showed quantum confinement effects with a blue shift from 372 nm (large particles) to 363 nm (small particles). A broad defect related green-yellow luminescence centered at 555 nm indicative of n-type conductivity of the nanoparticles was also observed.;The n-type nanoparticles on p-type Si resulted in the development of a ZnO-nanocomposite/pSi n-p heterojunction diode for the first time. The nanodiode showed good rectification and low leakage currents. LogI-V characteristics gave built-in voltages of 0.69 and 0.7 eV, saturation currents of 2 and 2.34 x10-8A, and ideality factors of 5.9 and 5.7 for the small and large particles, respectively. The transport mechanisms of the nano-diodes were studied. C-V characteristics showed abrupt p-n junctions, suggesting an intimate junction interface consistent with the pseudo-epitaxial nature of the structure. A novel hydrogen gas nanosensor based on the ZnO-nanocomposite/Si heterojunction diode was developed for high sensitivity, rapid, room temperature sensing. Response and recovery times were reduced by a factor of 100 and smaller and denser nanoparticles were found to be faster and more sensitive.
机译:具有改善的光学特性和增加的表面积的ZnO纳米粒子具有用于先进的光电,气体传感器和生物传感器应用的潜力。为了利用ZnO纳米粒子的这些独特特性来实现纳米级器件,我们开发了通过大面积(100)Si表面上的二嵌段共聚物对ZnO纳米粒子进行自组装和功能化的新技术。这些新颖的技术使我们能够随后开发出第一个基于ZnO纳米粒子的器件。因此,首次开发了一种新型的ZnO-纳米复合材料/ Si np异质结二极管和一种高性能的氢气纳米传感器。在大面积硅衬底上。通过AFM研究评估了纳米颗粒和共聚物的物理参数之间的相关性。通过改变共聚物嵌段的长度来控制纳米颗粒的尺寸和密度。最大的纳米颗粒的平均尺寸为250 nm,密度为1x107cm-2,而最小的纳米颗粒的平均尺寸为20nm,密度为1x101010cM -2。 XRD研究表明,纤锌矿晶体结构的纳米颗粒具有与Si衬底相同的取向(100),表明是伪外延纳米结构。室温光致发光研究表明,量子限制效应具有从372 nm(大颗粒)到363 nm(小颗粒)的蓝移。还观察到了以555 nm为中心的宽缺陷相关的绿黄色发光,表明纳米粒子具有n型导电性。; p型硅上的n型纳米粒子导致ZnO-纳米复合材料/ pSi np异质结二极管的发展首次。纳米二极管显示出良好的整流和低漏电流。 LogI-V特性分别为小颗粒和大颗粒提供了0.69和0.7 eV的内置电压,2和2.34 x10-8A的饱和电流以及5.9和5.7的理想因子。研究了纳米二极管的传输机理。 C-V特性显示出突然的p-n结,表明与结构的伪外延性质一致的紧密结界面。开发了一种基于ZnO-纳米复合材料/ Si异质结二极管的新型氢气纳米传感器,用于高灵敏度,快速的室温感测。响应和恢复时间减少了100倍,并且发现更小,更密集的纳米颗粒更快,更灵敏。

著录项

  • 作者

    Ali, Hasina Afroz.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:39:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号