首页> 外文学位 >Polymer dynamics as a mechanism of cartilage flow-independent viscoelasticity.
【24h】

Polymer dynamics as a mechanism of cartilage flow-independent viscoelasticity.

机译:聚合物动力学是与软骨流动无关的粘弹性的一种机制。

获取原文
获取原文并翻译 | 示例

摘要

Articular cartilage is the soft tissue consisting mostly of extracellular matrix biopolymers and water that covers the ends of bones in synovial joints. Cartilage functions mechanically: it provides low-friction surfaces for articulation and deforms during joint contact to decrease contact pressure and increase joint stability. As such, understanding the specific molecular origins of cartilage resistance to deformation is necessary to understand cartilage mechanical function.; Most previous cartilage mechanics research has focused on macroscale continuum models, but recent advances have enabled the description and determination of microscale polymeric behavior. The theory of polymer dynamics uses statistical physics to describe the motions and interactions of entangled polymers. The objective of this project was to determine if polymer dynamics is a relevant mechanism in cartilage viscoelasticity, with the underlying hypothesis that modifications to cartilage molecules will result in changes in tissue-level mechanical properties that are predicted by polymer dynamics theory.; Experiments consisted of perturbations to cartilage designed to examine polymeric mechanisms of viscoelasticity, and the results were consistent with polymer theory. Cartilage stress-relaxation data is best described by mathematical models containing both flow-dependent and flow-independent components. Cartilage stress-relaxation proceeds slower at higher volumetric concentrations of matrix molecules. Cartilage exhibits faster stress-relaxation at increased temperature, as well as Gough-Joule-type effects. Enzymatic digestion of specific matrix molecules results in faster stress-relaxation. Increasing the solution ion concentration (decreasing the aggrecan stiffness) results in faster stress-relaxation. The stretched exponential time constant describing cartilage stress-relaxation is negatively correlated with the transverse nuclear magnetic relaxation time of collagen protons.; These data present a complex picture of cartilage mechanics and the polymer dynamics interpretation is consistent with the role of matrix viscoelasticity developed in previous cartilage mechanics studies. Fluid flow appears to be a slow mechanism of cartilage viscoelasticity, and polymer motion may be a mechanism of the faster stress-relaxation which is observed experimentally. Significant further research remains to fully understand how the motions and interactions of specific matrix molecules in conjunction with fluid flow result in the nonlinear viscoelasticity of cartilage.
机译:关节软骨是软组织,主要由细胞外基质生物聚合物和水组成,覆盖滑膜关节骨头的末端。软骨具有机械作用:它提供低摩擦的表面用于关节运动,并在关节接触期间变形,从而降低接触压力并提高关节稳定性。因此,了解软骨抗变形的特定分子起源对于理解软骨的机械功能是必要的。以前的大多数软骨力学研究都集中在宏观连续模型上,但是最近的进展使人们能够描述和确定微观聚合行为。聚合物动力学理论使用统计物理学来描述缠结聚合物的运动和相互作用。该项目的目的是确定聚合物动力学是否是软骨粘弹性的一个相关机制,其基本假设是,对软骨分子的修饰将导致聚合物动力学理论预测的组织水平机械性能的变化。实验由对软骨的扰动组成,旨在检查粘弹性的聚合物机制,其结果与聚合物理论一致。软骨应力松弛数据最好由包含流量相关和流量独立成分的数学模型来描述。软骨应力松弛在基质分子的体积浓度较高时进行得较慢。软骨在升高的温度下表现出更快的应力松弛,以及高夫-焦耳型效应。特定基质分子的酶消化导致更快的应力松弛。增加溶液离子浓度(降低聚集蛋白聚糖刚度)会导致应力松弛更快。描述软骨应力松弛的拉伸指数时间常数与胶原质子的横向核磁弛豫时间负相关。这些数据显示了软骨力学的复杂情况,聚合物动力学的解释与先前的软骨力学研究中开发的基质粘弹性的作用是一致的。流体流动似乎是软骨粘弹性的慢速机制,而聚合物运动可能是通过实验观察到的更快的应力松弛的机制。仍需进行大量重要的研究,以充分了解特定基质分子的运动和相互作用以及流体流动如何导致软骨的非线性粘弹性。

著录项

  • 作者

    June, Ronald Kent, II.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号