首页> 外文学位 >Finite element methods for finite size scaling.
【24h】

Finite element methods for finite size scaling.

机译:有限尺寸缩放的有限元方法。

获取原文
获取原文并翻译 | 示例

摘要

The study of phase transitions and critical phenomena is an area of great interest in science. Liquid to gas, ferromagnetic to paramagnetic, fluid to superfluid, insulator to conductor are a few examples of physical systems exhibiting phase transition and critical phenomena. Classical phase transitions have thermal fluctuations as the main driving force for the transition. In statistical mechanics phase transitions are associated with singularities in the free energy. These singularites only occur in the thermodynamic limit where the volume (V) and particles (N) go to infinity with the density held constant (N/V). By examining the partition function for a finite system, the function is a sum of a set number of terms. The partition function then would be analytical. It is only when an infinite number of terms are added is there a singularity in the partition function. The subject of Finite Size Scaling theory is the relation of the phenomena in a finite systems to the true phase transition of an infinite system. Finite Size Scaling theory provides a numerical method to obtain accurate results for infinite systems simply by studying corresponding small systems.;The focus of this thesis is on transitions of a different nature. Quantum phase transitions (transitions that occur at absolute zero) have Heisenberg's uncertainty principle as the driving force for the transition. In quantum mechanics, the finite size problem occurs when looking at the critical behaviour of the Hamiltonian as a function of a set of parameters. The interest is where the bound states energies become non-analytical. The size of the system is related to the number of elements in a complete basis set used to expand the exact wave function. In this thesis we present the use of the Finite Element Method (a numerical technique commonly used in engineering problems to solve partial differential equations or integral equations).;Previous finite size scaling studies in quantum mechanics employed a basis set expansion of the wave function and the problem is solved variationally. Slater type basis sets were used for this purpose. In the effort to apply finite size scaling calculations for larger systems Gaussian type functions were employed however the a larger number of Gaussian functions are needed to obtain accurate results. The use of standard electronic structure packages was also explored, however, the lack of consistently increasing size for basis sets limits the application for finite size scaling purposes.;We first apply the finite element element method (FEM) to solve for the short range Yukawa potential and obtained the critical parameters for the model potential. We develop the framework necessary to use FEM for finite size scaling. As mentioned before the 'size' of the system is the number of basis functions needed in the expansion of the wave function. However, using FEM the size of the system is the number of elements used. We then studied the Hulthen potential in comparison to the basis set results and also compare the results to the analytical solutions for the both methods.;Finally we explore the use of FEM in combination with Hartree-Fock theory to solve 2 to 4 electron systems. The use of Hartree-Fock theory allows for the implementation of finite size scaling to larger systems. We used the FEM Hartree-Fock to calculate for the critical parameters of 2 to 4 electron systems. Although the results are not exact (as to be expected due to the use of Hartree-Fock theory) we get an estimate to the critical points of these systems. FEM can be combined with other electronic structure theories, which would allow for the study of larger systems exhibiting critical phenomena.
机译:相变和临界现象的研究是科学领域的一个重要领域。液体到气体,铁磁到顺磁,流体到超流体,绝缘体到导体是物理系统表现出相变和临界现象的一些例子。经典相变具有热涨落作为过渡的主要驱动力。在统计力学中,相变与自由能的奇异性有关。这些奇石仅出现在热力学极限中,在该极限中,体积(V)和颗粒(N)达到无穷大,而密度保持恒定(N / V)。通过检查有限系统的分区函数,该函数是一组条件项的总和。则分区函数将是解析的。仅当添加无限数量的项时,分区函数中才会出现奇异性。有限尺寸缩放理论的主题是有限系统中的现象与无限系统的真实相变之间的关系。有限尺度定标理论提供了一种数值方法,只需研究相应的小型系统即可获得无限系统的精确结果。本论文的重点是不同性质的跃迁。量子相变(发生在绝对零点处的跃迁)具有海森堡的不确定性原理作为跃迁的驱动力。在量子力学中,当将哈密顿量的临界行为视为一组参数的函数时,就会出现有限大小的问题。有趣的是,束缚态能量变为非分析性的。系统的大小与用于扩展精确波函数的完整基础集中的元素数量有关。在本文中,我们介绍了有限元方法(一种在工程问题中通常用于解决偏微分方程或积分方程的数值技术)的使用。该问题得到了不同程度的解决。为此,使用了Slater类型基础集。为了对较大的系统应用有限大小的比例计算,采用了高斯型函数,但是需要大量的高斯函数才能获得准确的结果。还探索了使用标准电子结构封装的方法,但是,由于基集尺寸的持续减小,限制了其在有限尺寸缩放方面的应用。我们首先应用有限元法(FEM)解决短距离Yukawa势,并获得了模型势的关键参数。我们开发了使用FEM进行有限尺寸缩放所必需的框架。如前所述,系统的“大小”是波动函数扩展所需的基本函数数。但是,使用FEM,系统的大小就是所用元素的数量。然后,我们与基集结果进行了比较,研究了Hulthen势,并将结果与​​两种方法的解析解进行了比较。最后,我们探索了结合FEM结合Hartree-Fock理论来求解2至4个电子系统的方法。 Hartree-Fock理论的使用允许对大型系统实施有限大小的缩放。我们使用FEM Hartree-Fock计算2至4个电子系统的关键参数。尽管结果并不精确(由于使用了Hartree-Fock理论,这是可以预期的),但我们可以估算出这些系统的临界点。有限元可以与其他电子结构理论相结合,这将有助于研究显示关键现象的大型系统。

著录项

  • 作者

    Moy, Winton.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号