首页> 外文学位 >Conformance to tolerance by closed-loop machining and inspection.
【24h】

Conformance to tolerance by closed-loop machining and inspection.

机译:通过闭环加工和检查达到公差。

获取原文
获取原文并翻译 | 示例

摘要

Determining the conformance between geometric deviations and desired design specifications is a major goal in precision surface machining. The degree of conformity is estimated using coordinate metrology to quantify the geometric accuracy of the fabricated part. Often, the geometric deviations observed in the final machined pans are caused by inherent machining process errors, including geometric imperfections, thermal effects, dynamic errors, and operational errors. Since these machining errors cannot be avoided it is necessary to predict and then to compensate for their geometric effects in a systematic closed-loop machining process. In this research, a technique for the automated inspection of geometric deviations is investigated and the corresponding compensation scheme for closed-loop machining processes is developed. The method constructs optimum substitute geometries from the discrete measured points. It then uses the information to automatically generate appropriate machining instructions that compensate for observed geometric deviations. The proposed approach exploits a new fitting method, Maximum Conformance to Tolerance (MCT), which maximizes the capability of compensation for the surface regions with unacceptable geometric deviations, and minimizes the total amount of the required compensation on the actual machined surface. Since the multivariable optimization problem defined by MCT is highly nonlinear, a search method for capturing an appropriate set of data points from the machined surface is developed, which significantly enhances computational stability and reduces uncertainty of the MCT estimation. The developed search algorithm specifies location and number of the measurements based on the continuity of the probability density function of geometric deviations, which is estimated by Parzen Windows, a nonparametric pattern recognition technique.; Furthermore, a novel method to generate the proper compensating machining instructions, based on the geometric deviations evaluated by MCT, is developed. The technique, called Local Compensating Transformation (LCT), uses the Voronoi Diagram and Delaunay Triangulation to model the surface geometry and determine a distribution of the geometric deviations. For each unsatisfactory region of the surface, LCT searches for the optimum local transformations of the corresponding machining instructions. This provides a unified approach, which generates the compensating piecewise tool paths for the next phase of machining independent of the complexity and properties of the nominal geometry.; Illustrative case studies and simulations have been performed using the developed methodology, to validate its performance using a variety of the geometries with different degrees of complexity and tolerance specification. It has been observed that the developed techniques are efficient and stable and, that the geometric deviations resulting from the quasistatic machining errors can be reduced up to 94%. The proposed methodology was used in closed-loop machining with a Computer Numerical Control (CNC) milling machine and a Coordinate Measuring Machine (CMM) with a tactile probing system. Results have successfully shown up to a 74% reduction in the final product's geometric deviations. The methodology is flexible for any type of the nominal geometry of the workpiece and any configuration of the machine tools. Furthermore, it can he implemented in different cases of closed-loop machining including the on-line inspection, intermittent inspection and the production of repetitive parts.; Keywords. Surface inspection, sculptured surfaces, coordinate metrology, tolerance zone, minimum zone, geometric deviation, machining errors, quasistatic errors, error compensation, geometric deviation, kinematic error model, error linear operator, machine tool configuration, inspection uncertainty, inspection planning, sampling strategy, Design For Manufacturing (DFM), Design For Machining (DFMc), tolerance all
机译:确定几何偏差与所需设计规格之间的一致性是精密表面加工的主要目标。使用坐标计量来估计合格程度,以量化所制造零件的几何精度。通常,在最终机加工的平底锅中观察到的几何偏差是由固有的加工过程误差引起的,包括几何缺陷,热效应,动态误差和操作误差。由于无法避免这些加工误差,因此有必要在系统的闭环加工过程中预测然后补偿其几何影响。在这项研究中,研究了一种自动检查几何偏差的技术,并开发了相应的闭环加工过程补偿方案。该方法从离散的测量点构造最佳的替代几何形状。然后,它使用该信息自动生成适当的加工指令,以补偿观察到的几何偏差。所提出的方法采用了一种新的拟合方法,即最大允许公差(MCT),该方法最大程度地补偿了具有无法接受的几何偏差的表面区域的补偿能力,并最大程度地减少了在实际机加工表面上所需补偿的总量。由于MCT定义的多变量优化问题是高度非线性的,因此开发了一种从机加工表面捕获一组适当的数据点的搜索方法,该方法显着提高了计算稳定性并减少了MCT估计的不确定性。改进的搜索算法根据几何偏差的概率密度函数的连续性指定测量的位置和数量,该连续性由非参数模式识别技术Parzen Windows估计。此外,开发了一种新颖的方法,可基于MCT评估的几何偏差生成适当的补偿加工指令。该技术称为局部补偿变换(LCT),它使用Voronoi图和Delaunay三角剖分对表面几何形状进行建模并确定几何偏差的分布。对于表面的每个不满意区域,LCT会搜索相应加工指令的最佳局部转换。这提供了一种统一的方法,该方法可为下一加工阶段生成补偿分段刀具路径,而与名义几何形状的复杂性和特性无关。已经使用开发的方法论进行了案例研究和模拟,以使用具有不同程度的复杂度和公差规格的各种几何形状来验证其性能。已经观察到,所开发的技术是有效且稳定的,并且由于准静态加工误差而导致的几何偏差可以减少多达94%。所提出的方法用于带有计算机数控(CNC)铣床和带有触觉探测系统的坐标测量机(CMM)的闭环加工中。结果已成功显示最终产品的几何偏差减少了74%。该方法对于工件的任何类型的标称几何形状和机床的任何配置都是灵活的。此外,它可以在闭环加工的不同情况下实施,包括在线检查,间歇检查和重复零件的生产。关键字。表面检查,雕刻表面,坐标计量,公差带,最小区域,几何偏差,加工误差,准静态误差,误差补偿,几何偏差,运动学误差模型,线性误差算子,机床配置,检验不确定性,检验计划,抽样策略,制造设计(DFM),加工设计(DFMc),公差全部

著录项

  • 作者

    Barari Amirkola, Ahmad.;

  • 作者单位

    The University of Western Ontario (Canada).;

  • 授予单位 The University of Western Ontario (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 287 p.
  • 总页数 287
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号