首页> 外文学位 >Nanostructure engineering using nanosecond pulsed laser and nanoimprint lithography.
【24h】

Nanostructure engineering using nanosecond pulsed laser and nanoimprint lithography.

机译:使用纳秒脉冲激光和纳米压印光刻的纳米结构工程。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation addresses the applications of an excimer laser in ultrafast nanoimprint lithography (NIL), self-perfection by liquefaction (SPEL), fabrication of metal nanoparticle monolayers, and fabrication of sub-10-nm nanofluidic channels.; Laser-assisted nanoimprint lithography (LAN) has been demonstrated. In LAN, the resist is melted by a laser pulse, and then imprinted with a fused silica mold. LAN has been used to pattern various polymer nanostructures on different substrates with high fidelity and uniformity. The imprint time is measured to be around 200 ns. Simulation indicates that the substrates and molds are exposed to negligible heat during LAN. A flash lamp facilitates LAN applications up to full wafer scale.; SPEL uses selective melting to remove fabrication defects in nanostructures post fabrication. In open space (O-SPEL), the line edge roughness (LER) of Si and Cr lines has been reduced as much as 5.6 fold in less than 200 ns. With a cap (C-SPEL), the nanostructures preserve the original geometries with LER removed. Under the guidance of a top plate (G-SPEL), the molten nanostructures rise up and reshape into new structures with vertical sidewalls and flat tops, but also with a higher aspect ratio. Applications of SPEL include making sub-25-nm smooth cylindrical NIL pillar molds and smoothing Si waveguides.; Metal nanoparticle monolayers are fabricated on various substrates (silicon, fused silica and plastics) by exposing thin metal films a single laser pulse. The particle size depends on the material and the film thickness. Regular nanoparticle arrays have been fabricated by fragmentation of metal grating lines. The periodicity of these nanoparticles can be regulated by wettability or surface topography differences.; 1D and 2D enclosed nanofluidic channel arrays have been fabricated using a self-sealing technique. A laser pulse melts the top portion of the nanostructures, and the molten silicon flows laterally and fuses with a neighboring nanostructure, forming enclosed channels. The channel size has been further reduced to 9 nm using thermal oxidation, which is found to be self-limiting. DNA stretching using 20 nm wide self-sealed channels is demonstrated.
机译:本文讨论了准分子激光在超快纳米压印光刻(NIL),液化自完美(SPEL),金属纳米颗粒单层的制造以及10nm以下纳米流体通道的制造中的应用。激光辅助纳米压印光刻技术(LAN)已被证明。在局域网中,抗蚀剂通过激光脉冲熔化,然后用熔融石英模具压印。局域网已被用来在不同的基板上以高保真度和均匀性图案化各种聚合物纳米结构。压印时间测得约为200 ns。仿真表明,LAN期间基板和模具暴露于微不足道的热量。闪光灯可促进LAN应用达到最大晶圆尺寸。 SPEL使用选择性熔化技术在制造后去除纳米结构中的制造缺陷。在开放空间(O-SPEL)中,Si和Cr线的线边缘粗糙度(LER)在不到200 ns的时间内降低了5.6倍。有了盖(C-SPEL),纳米结构保留了去除LER后的原始几何形状。在顶板(G-SPEL)的引导下,熔融的纳米结构上升并重塑为具有垂直侧壁和平顶的新结构,但纵横比也更高。 SPEL的应用包括制作25nm以下的光滑圆柱NIL柱模和平滑Si波导。通过将金属薄膜暴露于单个激光脉冲中,可以在各种基板(硅,熔融石英和塑料)上制造金属纳米粒子单层。粒度取决于材料和膜厚。规则的纳米粒子阵列已经通过金属光栅线的碎片制造。这些纳米颗粒的周期性可以通过润湿性或表面形貌差异来调节。 1D和2D封闭的纳米流体通道阵列已使用自密封技术制造。激光脉冲使纳米结构的顶部熔化,熔融的硅横向流动并与相邻的纳米结构融合,形成封闭的通道。使用热氧化将沟道尺寸进一步减小至9 nm,这是自限性的。证明了使用20 nm宽的自密封通道进行的DNA拉伸。

著录项

  • 作者

    Xia, Qiangfei.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号