首页> 外文学位 >Studies on two classes of positive electrode materials for lithium-ion batteries.
【24h】

Studies on two classes of positive electrode materials for lithium-ion batteries.

机译:锂离子电池两类正极材料的研究。

获取原文
获取原文并翻译 | 示例

摘要

The development of advanced lithium-ion batteries is key to the success of many technologies, and in particular, hybrid electric vehicles. In addition to finding materials with higher energy and power densities, improvements in other factors such as cost, toxicity, lifetime, and safety are also required. Lithium transition metal oxide and LiFePO4/C composite materials offer several distinct advantages in achieving many of these goals and are the focus of this report.Two series of layered lithium transition metal oxides, namely LiNi 1/3Co1/3-yMyMn1/3O2 (M=Al, Co, Fe, Ti) and LiNi0.4Co0.2-yMyMn0.4 O2 (M=Al, Co, Fe), have been synthesized. The effect of substitution on the crystal structure is related to shifts in transport properties and ultimately to the electrochemical performance. Partial aluminum substitution creates a high-rate positive electrode material capable of delivering twice the discharge capacity of unsubstituted materials. Iron substituted materials suffer from limited electrochemical performance and poor cycling stability due to the degradation of the layered structure. Titanium substitution creates a very high rate positive electrode 1 material due to a decrease in the anti-site defect concentration.LiFePO4 is a very promising electrode material but suffers from poor electronic and ionic conductivity. To overcome this, two new techniques have been developed to synthesize high performance LiFePO4/C composite materials. The use of graphitization catalysts in conjunction with pyromellitic acid leads to a highly graphitic carbon coating on the surface of LiFePO 4 particles. Under the proper conditions, the room temperature electronic conductivity can be improved by nearly five orders of magnitude over untreated materials. Using Raman spectroscopy, the improvement in conductivity and rate performance of such materials has been related to the underlying structure of the carbon films. The combustion synthesis of LiFePO4 materials allows for the formation of nanoscale active material particles with high-quality carbon coatings in a quick and inexpensive fashion. The carbon coating is formed during the initial combustion process at temperatures that exceed the thermal stability limit of LiFePO4. The olivine structure is then formed after a brief calcination at lower temperatures in a controlled environment. The carbon coating produced in this manner has an improved graphitic character and results in superior electrochemical performance. The potential co-synthesis of conductive carbon entities, such as carbon nanotubes and fibers, is also briefly discussed.
机译:先进锂离子电池的开发是许多技术(尤其是混合动力汽车)成功的关键。除了寻找具有更高能量和功率密度的材料外,还需要改善其他因素,例如成本,毒性,寿命和安全性。锂过渡金属氧化物和LiFePO4 / C复合材料在实现这些目标中具有许多明显的优势,是本报告的重点。两个系列的层状锂过渡金属氧化物,即LiNi 1 / 3Co1 / 3-yMyMn1 / 3O2(M合成了= Al,Co,Fe,Ti和LiNi0.4Co0.2-yMyMn0.4O2(M = Al,Co,Fe)。取代对晶体结构的影响与传输性质的变化有关,并最终与电化学性能有关。铝的部分取代产生了一种高速率的正极材料,该材料能够提供未取代材料两倍的放电容量。铁取代的材料由于层状结构的退化而遭受有限的电化学性能和差的循环稳定性。钛的置换由于反位缺陷浓度的降低而产生了非常高速率的正极1材料。LiFePO4是非常有前途的电极材料,但具有较差的电子和离子导电性。为了克服这个问题,已经开发了两种新技术来合成高性能LiFePO4 / C复合材料。石墨化催化剂与均苯四酸一起使用会在LiFePO 4颗粒的表面上形成高度石墨化的碳涂层。在适当的条件下,室温电子电导率可以比未​​处理的材料提高近五个数量级。使用拉曼光谱法,这种材料的电导率和速率性能的提高与碳膜的底层结构有关。 LiFePO 4材料的燃烧合成允许以快速且廉价的方式形成具有高质量碳涂层的纳米级活性材料颗粒。在初始燃烧过程中,碳涂层的形成温度超过了LiFePO4的热稳定性极限。然后在较低的温度下于受控环境中短暂煅烧后,形成橄榄石结构。以这种方式产生的碳涂层具有改善的石墨特性并导致优异的电化学性能。还简要讨论了导电碳实体(例如碳纳米管和纤维)的潜在共合成。

著录项

  • 作者

    Wilcox, James Douglas.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号