首页> 外文学位 >Design of high-dimensional oversampling data converters with on-chip learning: Theory, algorithm and hardware realization.
【24h】

Design of high-dimensional oversampling data converters with on-chip learning: Theory, algorithm and hardware realization.

机译:具有片上学习功能的高维过采样数据转换器的设计:理论,算法和硬件实现。

获取原文
获取原文并翻译 | 示例

摘要

Advances in miniaturization have enabled the integration of high density recording and recognition elements within a single device with applications ranging from biomedical engineering to surveillance sensors. One of the challenges of high density sensing is the acquisition of high dimensional analog signals within a given power budget at a specified resolution. The underlying success of high dimensional sensing depends upon the tracking of low dimensional information manifolds embedded in a high dimensional signal space. The objective of this work is to develop theory, algorithm and hardware for an adaptive high-dimensional mixed signal analog to digital interface that can learn to determine the salient information embedded in a high dimensional analog signal space.;This dissertation presents a framework for constructing a high dimensional oversampling SigmaDelta (Sigma-Delta) learning algorithm and hardware that can identify and track the low-dimensional manifolds embedded in a high-dimensional analog signal space. At the core of the proposed approach is a min-max stochastic optimization of a regularized cost function that combines the machine learning principle with SigmaDelta modulation. As a result, the algorithm not only produces a quantized sequence of transformed analog signals but also a quantized representation of transform itself. Thus, this algorithm naturally yields a high dimensional Spatiotemporal SigmaDelta Learner (Abbrev: STL) system. This STL framework is generic and can be extended to higher-order modulators with different signal transformations. In this work, learning is demonstrated to identify the linear compression manifolds which can eliminate redundant analog-to-digital conversion (ADC) paths. This improves the energy efficiency of the proposed architecture compared to a conventional multi-channel data acquisition system. One of the salient features of this architecture is its self-calibration property in the presence of computational artifacts of mismatch, offset and nonlinearity.;The proposed STL system is realized on chip as a proof of concept. The system is mapped to a mixed signal design that consists of an analog matrix vector multiplier designed with dynamic biasing technique for manifold learning and digitized interface for spatiotemporal data conversion and manifold storage. Measured results from the four dimensional STL system fabricated in a 0.5 mum CMOS process demonstrate the real-time adaptation and self-calibration capabilities that are consistent with theoretical and simulation results. This adaptation and self-calibrating capability of STL system make it suitable for implementing practical high-dimensional analog-to-digital converter. The SigmaDelta learning of designed prototype has been successfully applied for source localization and bearing angle estimation using miniaturized microphone arrays. The proposed architecture is generic and can be applied to wide range of applications which include brain machine interfaces (BMI), "smart" hearing aids, high-density MEMS sensors, electro-chemical, bio-molecular sensor arrays and miniaturized RF antenna arrays.
机译:小型化的进步已使高密度记录和识别元件集成在单个设备中,其应用范围从生物医学工程到监视传感器。高密度感测的挑战之一是在给定的功率预算内以指定的分辨率采集高维模拟信号。高维感测的基本成功取决于对嵌入高维信号空间的低维信息流形的跟踪。这项工作的目的是为自适应高维混合信号模数接口开发理论,算法和硬件,以学习确定嵌入在高维模拟信号空间中的显着信息。高维过采样SigmaDelta(Sigma-Delta)学习算法和硬件,可以识别和跟踪嵌入在高维模拟信号空间中的低维流形。所提出方法的核心是正则化成本函数的最小-最大随机优化,它将机器学习原理与SigmaDelta调制相结合。结果,该算法不仅产生已变换模拟信号的量化序列,而且还产生变换本身的量化表示。因此,该算法自然产生了高维时空SigmaDelta学习器(Abbrev:STL)系统。该STL框架是通用的,可以扩展到具有不同信号转换的高阶调制器。在这项工作中,通过学习可以识别线性压缩歧管,从而消除冗余的模数转换(ADC)路径。与传统的多通道数据采集系统相比,这提高了所提出架构的能源效率。该体系结构的显着特征之一是它在存在失配,失调和非线性计算伪像的情况下具有自校准特性。所提出的STL系统在芯片上实现,作为概念验证。该系统映射到一个混合信号设计,该设计包含一个模拟矩阵矢量乘法器,该乘法器采用动态偏置技术进行设计,以进行流形学习,并使用数字化接口进行时空数据转换和流形存储。在0.5微米CMOS工艺中制造的四维STL系统的测量结果表明,其实时自适应和自校准功能与理论和仿真结果一致。 STL系统的这种自适应和自校准功能使其适合于实现实用的高维模数转换器。设计原型的SigmaDelta学习已成功地用于使用微型麦克风阵列进行源定位和方位角估计。所提出的架构是通用的,并且可以应用于包括脑机接口(BMI),“智能”助听器,高密度MEMS传感器,电化学,生物分子传感器阵列和小型化RF天线阵列的广泛应用。

著录项

  • 作者

    Gore, Amit Satish.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号