首页> 外文学位 >Hypersonic boundary layer receptivity to acoustic disturbances over cones.
【24h】

Hypersonic boundary layer receptivity to acoustic disturbances over cones.

机译:高超声速边界层对锥体上的声干扰的接受度。

获取原文
获取原文并翻译 | 示例

摘要

The receptivity mechanisms of hypersonic boundary layers to free stream acoustic disturbances are studied using both linear stability theory (LST) and direct numerical simulations (DNS). A computational code is developed for numerical simulation of steady and unsteady hypersonic flow over cones by combining a fifth-order weighted essentially non-oscillatory (WENO) scheme with third-order total-variation-diminishing (TVD) Runge-Kutta method. Hypersonic boundary layer receptivity to free-stream acoustic disturbances in slow and fast modes over 5-degree, half-angle blunt cones and wedges are numerically investigated. The free-stream Mach number is 6.0, and the unit Reynolds number is 7.8x106/ft. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations in two-dimensional and axisymmetric coordinates.;Computations are performed in three steps. After the steady mean flow field is computed, linear stability analysis is performed to find the most amplified frequency and the unstable disturbance modes in different flow regions. Then time accurate computations are performed using slow and fast mode acoustic disturbances, and the initial generation, interaction and evolution of instability waves inside the boundary layers are studied.;Receptivity computations showed that the acoustic disturbance waves propagated uniformly to downstream, interact with the bow shock, enter the boundary layer, and then generate the initial amplitude of the instability waves in the leading edge region. Effects of the entropy layer due to nose bluntness to the receptivity process are studied. It is found that transition location moves downstream and is delayed by increasing bluntness, and the role of the entropy layer in this process is revealed. Also, the effects of wall cooling to the receptivity process using slow and fast mode acoustic disturbances are studied. The effects of cooling on the first and second mode regions are investigated. It is found that the first mode is stabilized and the second mode is destabilized by wall cooling when the flow is forced by acoustic waves in the slow mode.
机译:利用线性稳定性理论(LST)和直接数值模拟(DNS)研究了高超声速边界层对自由流声干扰的接受机制。通过将五阶加权基本非振荡(WENO)方案与三阶总变差减小(TVD)Runge-Kutta方法相结合,开发了用于对锥体上的稳态和非稳态高超声速流动进行数值模拟的计算代码。数值研究了在5度半角钝锥和楔形上慢速和快速模式下高超声速边界层对自由流声扰动的接受度。自由流马赫数为6.0,单位雷诺数为7.8x106 / ft。通过在二维和轴对称坐标中求解完整的Navier-Stokes方程,可以获得稳态和非稳态解。计算分三步进行。在计算出稳定的平均流场之后,进行线性稳定性分析,以找到在不同流动区域中最大的放大频率和不稳定的扰动模式。然后利用慢速和快速模式的声干扰进行时间精确的计算,并研究了边界层内部不稳定波的产生,相互作用和演化。接受性计算表明,声干扰波均匀地传播到下游,并与船首相互作用。冲击,进入边界层,然后在前缘区域生成不稳定性波的初始振幅。研究了由于鼻钝造成的熵层对接受过程的影响。发现过渡位置向下游移动并由于钝度的增加而延迟,并且揭示了熵层在该过程中的作用。此外,还研究了壁冷却对使用慢速和快速模式声干扰的接收过程的影响。研究了冷却对第一和第二模式区域的影响。已经发现,当在慢速模式下通过声波迫使流动时,通过壁冷却使第一模式稳定并且使第二模式不稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号