首页> 外文学位 >The superconducting proximity effect in strong ferromagnets.
【24h】

The superconducting proximity effect in strong ferromagnets.

机译:强铁磁体中的超导邻近效应。

获取原文
获取原文并翻译 | 示例

摘要

Superconductivity and ferromagnetism are similar in that they are both phases of matter with ordered electronic spins. In their simplest form, superconducting Cooper pairs are composed of a spin-up and spin-down electron in a spin-singlet with total spin zero. In a ferromagnet, the exchange energy between electrons tends to align the electronic spins into a single spin state. Thus, the two phases are generally incompatible with each other and few materials exist which display both properties. The most straightforward way to study the competition of the two order parameters, therefore, is to put a superconducting material (S) and a ferromagnetic material (F) in electrical contact and measure the properties of the electrons that diffuse between the materials: this is known as the proximity effect. As the energy scale of superconductivity---set by the critical temperature, Tc---is generally much lower than that of ferromagnetism---set by the Curie temperature, TCurie---it is the superconducting order parameter which changes most dramatically.; When a Cooper pair enters a ferromagnet, the spin-up and spin-down electrons are affected oppositely by the presence of the exchange field. In the most simple case, this should lead to the Cooper pair acquiring a non-zero center-of-mass momentum which will result in a spatially varying superconducting density. In response, the superconducting density---and therefore related superconducting phenomena---will oscillate as a function of ferromagnet thickness, dF. This oscillation has been observed in the form of oscillating critical temperatures, Tc, of S/F bilayers and oscillating critical currents, Jc, of S/F/S Josephson junctions, with varying degrees of qualitative and quantitative theoretical agreement. Recent theoretical predictions have greatly increased both the breadth of expected phenomena and the number of critical materials parameters. As both Tc and Jc measurements are particularly sensitive to boundary conditions and provide relatively little quantitative information per sample, more discerning measurement techniques are needed for definitive tests and to narrow the possible range of parameter-space and advance the field.; We measure the tunneling density of states (DOS) of superconductor/strong ferromagnet thin-film bilayers as a function of F-layer thickness, dF, with planar Al2O3 tunnel junctions. The DOS gives us much more direct information about the superconducting order parameter than either Tc or Jc and is not nearly as sensitive to differences in boundary conditions. By measuring the DOS systematically as a function of dF we can observe the spatial evolution of the order parameter and therefore distinguish between the many different possible theoretical predictions in the field. Here, we report measurements made on Nb/CoFe, Nb/Ni, and Nb/CuNi bilayers. By fitting the DOS as a function of rip to the most recent theoretical models, we have determined that the most important parameters needed to explain our data are the exchange field, Eex, and spin-orbit scattering. GammaSO. Further, we have measured an anomalous sub-gap structure that is not predicted by the current theoretical model. Based on its peculiar behavior in a magnetic field, we propose that this feature might be the result of long-range triplet superconducting correlations, which have not been previously observed in these materials.
机译:超导和铁磁性相似,因为它们都是具有有序电子自旋的物质相。在最简单的形式中,超导库珀对由自旋小子中的自旋向上和自旋向下的电子组成,总自旋为零。在铁磁体中,电子之间的交换能量趋于使电子自旋对准单自旋状态。因此,这两个相通常彼此不相容,并且几乎没有显示两种性质的材料。因此,研究两个阶参数竞争的最直接方法是将超导材料(S)和铁磁材料(F)进行电接触,并测量在材料之间扩散的电子的性质:称为邻近效应。由于由临界温度Tc设定的超导能级通常远低于由居里温度TCurie设定的铁磁能级,因此超导能级参数的变化最大。 。;当库珀对进入铁磁体时,自旋向上和自旋向下的电子受到交换场的相反影响。在最简单的情况下,这应该导致库珀对获得非零的质心动量,这将导致空间变化的超导密度。作为响应,超导密度-以及相关的超导现象-将随着铁磁体厚度dF的变化而振荡。已经观察到这种振荡的形式为S / F双层的临界温度Tc和S / F / S Josephson结的临界电流Jc,具有不同程度的定性和定量理论一致性。最近的理论预测大大增加了预期现象的范围和关键材料参数的数量。由于Tc和Jc测量都对边界条件特别敏感,并且每个样品提供的定量信息相对较少,因此,对于确定性的测试以及缩小参数空间的可能范围和推进领域,需要使用更多可辨别的测量技术。我们用平面Al2O3隧道结来测量超导体/强铁磁体薄膜双层的隧穿状态密度(DOS),它是F层厚度dF的函数。 DOS比Tc或Jc为我们提供了有关超导阶数参数的更多直接信息,并且对边界条件的差异不那么敏感。通过系统地测量DOS作为dF的函数,我们可以观察到阶数参数的空间演变,因此可以区分该领域中许多不同的可能的理论预测。在这里,我们报告了在Nb / CoFe,Nb / Ni和Nb / CuNi双层上进行的测量。通过将DOS作为裂变的函数拟合到最新的理论模型,我们确定了解释我们的数据所需的最重要参数是交换场,Eex和自旋轨道散射。 GammaSO。此外,我们已经测量了当前理论模型无法预测的异常子间隙结构。基于其在磁场中的特殊行为,我们建议此功能可能是远程三重态超导相关性的结果,而这些在以前尚未在这些材料中观察到。

著录项

  • 作者

    SanGiorgio, Paul.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号