首页> 外文学位 >Bacterial generation of the anti-greenhouse gas dimethylsulfide: Kinetic, spectroscopic, and computational studies of the DMSO reductase system.
【24h】

Bacterial generation of the anti-greenhouse gas dimethylsulfide: Kinetic, spectroscopic, and computational studies of the DMSO reductase system.

机译:抗温室气体二甲硫的细菌生成:DMSO还原酶系统的动力学,光谱学和计算研究。

获取原文
获取原文并翻译 | 示例

摘要

Biogenic dimethylsulfide (DMS) produced by marine microorganisms is the main source of sulfur thought to play a key role in cloud formation and global solar albedo. The study presented herein provides a better understanding of the global sulfur cycle at the molecular level by exploring the enzymatic process whereby DMS is generated from from dimethylsulfoxide (DMSO) by examining the pathway that leads to the generation of this gas, the DMSO reductase pathway.; Resonance Raman (rRaman) spectroscopic studies have also been undertaken in order to determine the roles of two active site residues, W116 and Y114, in the catalytic cycle of substrate turnover in DMSO reductase. We have found that whereas Y114F mutant forms a complex with DMSO substrate and W116F does not form the complex using multiple component analysis (MCA) and rRaman spectroscopy. The reaction mechanism of the properly redox cycled W116F form of the enzyme was determined and is reported.; The physiological reductant of DMSO reductase is a pentaheme, membrane-bound c-type cytochrome protein known as DorC. The purification procedure for wild-type DorC has been successfully developed as part of this study. The limiting rate of electron transfer from DorC to DMSO reductase has been determined to be 2.66 s-1 using stopped-flow spectrophotometry and pseudo-first order reaction conditions. This experiment also yielded a Kd of 13.2 muM for binding of DorC to DMSOR. Electron paramagnetic resonance (EPR) spectroscopy has been used to analyze the possible generation of a Mo (V) intermediate and it does not appear as though a Mo (V) state is generated in the course of the reaction. Surface plasmon resonance (SPR or BIAcore) experiments have been undertaken to determine the dissociation constant (K d) of the complex independent of electron transfer. The Kd was determined to be approximately 30 muM.; This study has also produced a computational model of DorC using the computer program Rosetta. From this model, protein docking simulations have been calculated using Hex 4.5 and have produced a compelling working model for the structure of the protein complex with a specific route of electron transfer from the five heme centers of DorC and into the molybdenum center of DMSO reductase identified.
机译:海洋微生物产生的生物二甲基硫(DMS)是硫的主要来源,被认为在云形成和全球太阳反照率中起关键作用。本文介绍的研究通过探索酶促过程,从而更好地了解了分子水平上的总体硫循环,其中酶促过程是通过检查导致这种气体生成的途径(即DMSO还原酶途径)从二甲基亚砜(DMSO)生成DMS的。 ;为了确定两个活性位点残基W116和Y114在DMSO还原酶中底物更新的催化循环中的作用,还进行了共振拉曼(rRaman)光谱研究。我们已经发现,虽然Y114F突变体与DMSO底物形成复合物,而W116F不能使用多组分分析(MCA)和rRaman光谱学形成复合物。确定并报道了适当氧化还原循环的W116F形式的酶的反应机理。 DMSO还原酶的生理还原剂是一种五血红素,膜结合的c型细胞色素蛋白,称为DorC。作为本研究的一部分,已经成功开发了野生型DorC的纯化程序。使用停止流分光光度法和拟一级反应条件,已确定从DorC到DMSO还原酶的电子转移极限速率为2.66 s-1。该实验还产生了DorC与DMSOR结合的13.2μM的Kd。电子顺磁共振(EPR)光谱已用于分析可能生成的Mo(V)中间体,并且似乎没有在反应过程中生成Mo(V)状态。已经进行了表面等离子体激元共振(SPR或BIAcore)实验,以确定与电子转移无关的复合物的解离常数(K d)。测定的Kd约为30μM。这项研究还使用计算机程序Rosetta生成了DorC的计算模型。从该模型中,已经使用Hex 4.5计算了蛋白质对接模拟,并为蛋白质复合物的结构提供了引人注目的工作模型,具有从DorC的五个血红素中心转移到已确定的DMSO还原酶的钼中心的特定电子转移途径。

著录项

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号