首页> 外文学位 >Optimisation d'une aile d'avion a profil adaptable: Etude numerique et experimentale.
【24h】

Optimisation d'une aile d'avion a profil adaptable: Etude numerique et experimentale.

机译:具有自适应轮廓的飞机机翼的优化:数值和实验研究。

获取原文
获取原文并翻译 | 示例

摘要

The international civil aeronautics industry was challenged to increase annual fuel efficiency by 2% between 2010 and 2020. To reach this goal, important investments have to be made in technological operational development. The aircraft drag reduction represents a significant part of the development, especially with promising laminar flow control technologies. Since aircraft construction technologies (smooth surface) and flight altitudes (clean flow) allow a laminar boundary layer on flight surfaces, technologies have been developed to reduce the friction drag by extending the laminar flow regions. Natural laminar flow airfoils have been designed, and wings with suction systems have been tested. This dissertation presents another laminar flow control method, the adaptable wall technology. The technological concept consist of replacing some of the rigid part of the wing by a flexible skin geometrically modified by actuators connected to a real time controller capable of optimizing the airfoil shape according to the flight conditions. The study is limited to a two dimensional wing section and subsonic wind speed. The originality of this work is that it integrates all technologies required for shape control in an aeroelastic research wing to be tested in a wind tunnel. This dissertation introduces the morphing vehicle concept, it exposes geometrical optimization and multidisciplinary optimization integrating an aerostructural model of the wing, and finally, it presents wind tunnel results. The conclusion of the dissertation is that the position of the laminar to turbulent transition point can be controlled with a flexible wall technique. However, the gain provided by the adaptable wing is relatively low when compared to a specifically optimized rigid wing, mostly because the domain is restricted to subsonic speed and to a narrow interval of angle of attack (1 to 2 degrees).
机译:在2010年至2020年之间,国际民用航空业面临着将年度燃油效率提高2%的挑战。要实现这一目标,必须在技术运营开发上进行重大投资。减少飞机阻力是发展的重要部分,尤其是在有希望的层流控制技术方面。由于飞机的建造技术(光滑的表面)和飞行高度(干净的流动)允许在飞行表面上形成层状边界层,因此已经开发出了通过扩展层流区域来减小摩擦阻力的技术。设计了自然层流翼型,并测试了带有抽吸系统的机翼。本文提出了另一种层流控制方法,自适应壁技术。该技术概念包括用柔性蒙皮代替机翼的一些刚性部分,该蒙皮由连接到实时控制器的执行器进行几何修改,该实时控制器能够根据飞行条件优化机翼形状。该研究仅限于二维机翼截面和亚音速风速。这项工作的独创性在于它将形状控制所需的所有技术集成到了将在风洞中进行测试的气动弹性研究机翼中。本文介绍了变体飞行器的概念,揭示了几何优化和综合了机翼航空结构模型的多学科优化,最后提出了风洞试验结果。论文的结论是,层流到湍流过渡点的位置可以通过柔性壁技术来控制。但是,与经过专门优化的刚性机翼相比,自适应机翼提供的增益相对较低,这主要是因为域仅限于亚音速和狭窄的攻角间隔(1-2度)。

著录项

  • 作者

    Sainmont, Corentin.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 M.Sc.A.
  • 年度 2010
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号